
Title

Author(s)

Citation

Journal title (Repository name etc.), Volume, Issue, Pages(Article number) etc.
・ジャーナル名（刊行物・サイト名）・巻号・ページ（その他論文番号等）：

・DOI (URL）

Publication Date: yyyy/mm/dd

年 月 日 ・出版日：

Publisher

・出版者：

Declaration

This preprint is the of the above.

・本プレプリントは、上記論文の である。

All necessary permissions from the publisher have

・ジャーナル（出版者）から必要な許諾を

been obtained

 得ている

not been obtained
 得ていない

Notes

Proceedings of the 13th IIAE International Conference on Industrial Application Engineering 2025

© 2025 The Institute of Industrial Applications Engineers, Japan.

Study of program placement optimization in mixed environments in

environmental adaptation

Yoji Yamatoa,*

aNTT Corporation, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

*Corresponding Author: yoji.yamato@ntt.com

Abstract

In recent years, the number of applications using

heterogeneous hardware such as FPGAs and GPUs has

been increasing. However, to fully utilize them, an

understanding of the hardware is necessary, which is a high

barrier. Based on this background, we have proposed

environment-adaptive software that automatically converts

code written by programmers for normal CPUs according

to the deployment environment, enabling high performance

operation. This paper targets automatic offloading to

appropriate hardware in a mixed environment that contains

normal CPUs, multi-core CPUs, FPGAs, GPUs, and

quantum computers. We confirm how much the

performance of normal CPUs can be achieved with each

hardware, and based on cost performance, we determine the

appropriate hardware for offloading and perform automatic

offloading. We confirm that the proposed method can

automatically offload by measuring the processing time

using actual heterogeneous hardware.

Keywords: Environment-Adaptive Software, Automatic

Offloading, Quantum Computer, Mixed Environment,

Hardware Selection.

1. Introduction

It is said that there are some aspects of Moore's Law

that expect CPUs (Central Processing Units) to become

faster over time that are no longer compatible with it. As a

result, in addition to normal CPUs, the use of

heterogeneous hardware such as multi-core CPUs, FPGAs

(Field Programmable Gate Arrays), and GPUs (Graphics

Processing Units) is increasing in applications. For example,

Microsoft has stated the use of FPGAs for search (1), and

Amazon provides FPGAs and GPUs as cloud (e.g., (2)-(6))

instances (7). In addition to FPGAs and GPUs, the number

of IoT devices is also increasing (e.g., (8)-(16)), and new

types of hardware such as DPUs (Data Processing Units)

and quantum computers are also emerging.

However, in order to accelerate on heterogeneous

hardware, it is necessary to configure and write code with

consideration for the characteristics of the hardware, and

programming skills using C language extensions such as

OpenCL (Open Computing Language) (17), OpenMP

(Open Multi-Processing) (18), and CUDA (Compute

Unified Device Architecture) (19) are desirable. Therefore,

for many programmers who have become accustomed to

using scripting languages such as PHP and Python, the skill

hurdle is high.

Heterogeneous hardware systems such as FPGAs,

GPUs, and quantum computers can also reduce power

consumption and are expected to develop in the future, but

the skill hurdle is high to use them. Therefore, a new

platform that can fully utilize heterogeneous hardware

without the hurdles will be important, which converts and

configures software written by programmers in the same

way as usual, and adapts it to the environment (FPGA,

GPU, quantum computer, etc.) where it will be deployed.

Therefore, we have proposed environment-adaptive

software that automatically converts existing software code

for FPGAs and GPUs and automatically sets the amount of

resources so that the code can be used in the deployment

environment, thereby accelerating applications. As

environment-adaptive software elements, we are evaluating

methods to automatically offload loop statements and

function blocks of existing code to FPGAs, GPUs, quantum

computers, etc. (20)-(27).

However, our verification so far has focused mainly on

automating offloading to individual hardware such as

FPGAs, GPUs, and quantum computers, and appropriate

offloading to a mixed environment has not been considered.

For example, even if GPU offloading provides 10 times the

performance and FPGA offloading provides 20 times the

performance, if the monthly cloud usage fee for an FPGA

instance is three times that of a GPU instance, GPU

offloading may be appropriate.

This paper focuses on automatic offloading to

appropriate hardware in a mixed environment that includes

normal CPUs, multi-core CPUs, FPGAs, GPUs, and

quantum computers. First, we analyze the existing

application to be offloaded, find the offloadable parts, and

attempt to offload to each hardware using the existing

proposed method. We confirm how many times the

performance of a normal CPU can be achieved with each

hardware, and based on the cost performance determined

from the cloud usage fee for that hardware, we determine

the appropriate hardware for offloading and automatically

offload it. We confirm that the proposed method can

automatically offload by measuring the processing time

using actual heterogeneous hardware: AMD Ryzen, Intel

Stratix, NVIDIA Geforce, and Microsoft Azure Quantum

(28).

2. Existing Technologies

2.1 Market technologies

NVIDIA has proposed CUDA for development of

GPGPU (General Purpose GPU). CUDA is targeted at GPU,

but OpenCL has been proposed for handling heterogeneous

hardware such as GPU, multi-core CPU, and FPGA, and

various companies provide tools for it. CUDA and OpenCL

require C language extension program writing, which is

difficult (e.g., releasing and copying data in memory

between kernels such as FPGA and CPU host).

Unlike CUDA and OpenCL, there are compilers that

specify the part to be processed on a directive basis and

create binary files for GPUs and so on according to the

directive, in order to easily use heterogeneous hardware.

Specifications include OpenACC (9) and OpenMP, and

compilers include PGI compiler (30) and gcc.

GPU, multi-core CPU, and FPGA offloading is

possible using CUDA, OpenCL, OpenACC, OpenMP, etc.

However, even if processing is performed, it is difficult to

speed up. For example, Intel compiler (31) is used for

multi-core CPU parallelization. This parallelizes the parts

of the loop that can be processed in parallel. However,

simply parallelizing the loop does not speed up the process

mainly for memory usage problems. When speeding up the

process using a GPU, CUDA experts perform tuning work

and use a compiler to search for suitable parallel processing

parts. As an automated search method, the author proposes

offloading using evolutionary computing.

Quantum computers are computers that apply quantum

mechanics. There has been an increase in research and

development of quantum computers using the versatile

quantum gate method. Many companies, including

Microsoft, Amazon, IBM, and Google, are working on this.

Azure Quantum and AWS Braket are provided as functions

of Microsoft's Azure clouds and Amazon's AWS clouds,

respectively, and allow for time-based use of the cloud,

with no initial costs for quantum computers. However, the

current situation is that quantum algorithms for solving

prime factorization and knapsack problems and so on using

quantum computers are devised by experts and

implemented one by one, and they are not easily accessible

to general users.

2.2 Outline of environment-adaptive software

We have proposed environment-adaptive software with

the processing overview shown in Figure 1. The

environment-adaptive function provided by the operator is

at the core, and the environment-adaptive software works

by linking the production environment, verification

environment, equipment resource DB, test case DB, and

code pattern DB.

Step 1: Analysis of user-provided code. Step 2:

Extraction of offloadable parts. Step 3: Search for

appropriate offload parts. Step 4: Adjustment of production

resource amount. Step 5: Adjustment of production

deployment location. Step 6: Production deployment of

binary files and verification. Step 7: Reconfiguration during

production operation.

User provided code is analyzed, and before production

operation begins, in Steps 1-6, code conversion, resource

Fig. 1. Processing outline of environment-adaptive

software

adjustment, placement location adjustment, and operation

verification are performed through verification environment

performance measurement tests. In Step 7, after production

operation begins, actual usage data is analyzed, and

reconfiguration is performed if it is clear that a

configuration change is appropriate.

2.3 Problems in this paper

Now, we summarize the problems. Acceleration using

heterogeneous hardware requires manual work by an expert.

We have previously proposed environment-adaptive

software and realized an automatic offloading method for

FPGAs, GPUs, and quantum computers. However, until

now the aim was to automate offloading for individual

hardware, and appropriate offloading in a mixed

environment had not been fully considered. For example,

even if a GPU provides 10 times the performance and an

FPGA provides 20 times the performance, if the usage fee

for FPGAs is three times that of GPUs, then GPUs would

be appropriate. Therefore, this paper targets automatic

offloading to appropriate hardware in an environment that

contains normal CPUs, multi-core CPUs, FPGAs, GPUs,

and quantum computers. We propose an appropriate

automatic offloading method for a mixed environment and

confirm the proposed method using a real heterogeneous

hardware mixed environment.

3. Offloading to a mixed environment
including quantum computers

Offloading to individual hardware is attempted using

the previous proposed method. First, we use a syntax

analysis library such as Clang (32) to understand the

program structure, and then attempt to offload it to a

quantum computer. In quantum computer offloading,

function block offloading is performed, so after the

quantum computer, a search is performed to see if there is a

library equivalent that can be used with multi-core CPUs,

GPUs, and FPGAs. If found, the function block offloading

is performed and performance is measured. Regardless of

whether function block offloading is possible or not, after

the function block offloading attempt, loop statement

offloading is attempted in the order of multi-core CPUs,

GPUs, and FPGAs, and performance is measured with the

final solution of evolutionary computation. Since

performance measurement results for all patterns are

obtained, the cost performance is calculated based on the

Fig. 2. An appropriate automatic offloading method for

mixed environments

usage fee for each hardware, and the appropriate hardware

is selected.

The details of the proposed method are explained using

Figure 2.

3.1 Function block offloading trial

Function block offloading trials are performed for each

hardware, including quantum computers. We use similarity

detection tools such as Deckard (33) to discover whether

there are any functional blocks that can be offloaded to each

hardware. A similarity detection tool is a tool that makes it

possible to detect similar code, such as code that has been

copied and then modified. Similarity detection uses

similarities in abstract syntax trees, vocabulary, lines,

program dependency graphs, fingerprints and so on. This

time, we use a tool that confirms abstract syntax trees.

When a function block that can be offloaded is found,

it is replaced with a processing part (equivalent to a library)

that uses the hardware corresponding to that code registered

in the code pattern DB, and offloaded. When using a

quantum computer, it is based on a quantum algorithm and

is implemented using one of the following. Qiskit (34) is a

quantum computer framework open sourced by IBM, Cirq

is a quantum computer framework open sourced by Google,

and Q¥# is a programming language for quantum

computers proposed by Microsoft. When using a multi-core

CPU instead of a quantum computer, it is replaced with an

OpenMP file that specifies the multi-core CPU library,

when using a GPU, it is replaced with an OpenACC file

that specifies the GPU library, and when using an FPGA, it

is replaced with an OpenCL file that corresponds the FPGA

IP core.

When an offload function block is found and replaced

with a processing part, the processing time when offloaded

and the processing time when executed on a normal CPU

are measured again, and the performance improvement

degree when offloaded is obtained.

3.2 Loop statement offloading trial

Loop statement offloading trials are performed for each

hardware. The structure of the for statement in the user

application is understood using a syntax analysis library.

For multiple for statements, patterns are created for whether

or not to offload to hardware, and a fast offload pattern is

found through repeated performance measurements in the

verification environment. This is common to all hardware.

The verification order may change, but the basic order is

multi-core CPU, GPU, and FPGA. This is because FPGAs

in particular take a long time from compilation to actual

device measurement, so if reasonably good results are

obtained in multi-core CPU and GPU offloading trials that

take a similar amount of processing time, they can be

skipped.

In trials in the verification environment, for multi-core

CPUs and GPUs, methods such as (20) are used to measure

multiple patterns of whether or not for statements can be

offloaded, using GA, an evolutionary computing method, to

find a fast pattern. Based on methods such as (22), FPGA

narrows down candidate loop statements based on

arithmetic intensity, loop count, and resource amount

analyzed using the ROSE framework (35), and then

measures the performance of multiple patterns in the

verification environment to find a high-speed offload

pattern. The final solution is an OpenMP file for multi-core

CPUs, an OpenACC file for GPUs, and an OpenCL file for

FPGAs.

Performance measurements are repeated along the way,

and the processing time when offloaded with the final

solution and the processing time when executed on a

normal CPU are measured again to obtain the degree of

performance improvement when offloading.

3.3 Hardware selection based on cost performance

There are cases where offloading is not possible

because a replaceable part cannot be found, or where

offloading does not improve performance, up to seven

patterns are available, including offloading function blocks

to quantum computers, multi-core CPUs, GPUs, and

FPGAs, and offloading loop statements to multi-core CPUs,

GPUs, and FPGAs. Basically, function block offloading

replaces a dedicated processing part (equivalent to a

library), so the degree of speedup is often large. In (25),

when the CPU's Fourier transform processing was replaced

with the GPU library cuFFT, the performance was 730

times higher. Therefore, if function block offloading is

possible, the selection of hardware corresponding to the

processing part is a strong candidate. On the other hand, if

function block offloading is not possible and only loop

statements are offloaded, it is necessary to decide which

hardware is appropriate for offloading.

Therefore, we propose a method to determine using the

cost performance based on user requests. The degree of

improvement compared to a normal CPU is measured for

seven offloading patterns. Here, when processing with a

quantum computer, most problems cannot be solved by a

CPU in the first place, and a normal CPU will time out, so

there is no need to calculate the degree of improvement.

Specifically, the degree of improvement for each offloading

pattern is divided by the offloading hardware usage fee

(monthly usage fee for cloud instances) to determine the

cost performance. If the cost performance is higher than

that of a normal CPU and is the highest across all patterns,

that hardware is appropriate, so it is selected as the system

and proposed to the user.

For example, if a VM with a normal CPU costs 60

USD/Month, a VM with a GPU costs 200 USD/Month, and

a VM with an FPGA costs 700 USD/Month, and an

application achieves 10 times the performance of a normal

CPU with GPU offloading and 20 times the performance of

a normal CPU with FPGA offloading, the cost performance

is calculated. In this case, GPU offloading is determined to

be appropriate, so it is proposed to the user.

4. Evaluation

The effectiveness of the method is evaluated by

confirming that four applications specified by the user can

be automatically offloaded to a mixed environment of

quantum computers, multi-core CPUs, GPUs, and FPGAs

in an appropriate manner and that cost-effective hardware is

selected.

4.1 Evaluation conditions

(a) Evaluated targets

There are four applications.

The evaluation target is an eigenvalue analysis problem.

For high-dimensional complex matrices, there is no

calculation procedure that can accurately express

eigenvalues with a finite number of algebraic operations.

For this reason, iterative methods have traditionally been

used for numerical analysis of eigenvalue problems. This

can be accelerated by utilizing the superposition property of

quantum states of quantum computers. The essence of the

problem is to find the eigenvalues of the associated matrix

of a general n-th order algebraic equation, and each

problem is determined by differences in parameters. The

eigenvalue analysis problem used is (36). As (36) shows,

the solution of eigenvalue analysis problems on quantum

computers is also implemented in Qiskit using quantum

algorithms.

There is NAS.BT (37), a block diagonal solver

calculation. A block diagonal solver is a numerical solution

method for partial differential equations. There are various

types and implementations of numerical calculations. We

use NAS.BT (NASA block triangular solver) (37) as an

example of a medium-scale numerical calculation

application with more than 100 loop statements. The

parameters are CLASS A settings, grid size is 64*64*64,

number of iterations is 200, and time step is 0.0008.

Himeno Benchmark (38) is a benchmark software used

to measure the performance of incompressible fluid

analysis, and solves the Poisson equation using the Jacobi

iteration method. It is frequently used for manual

acceleration on accelerators, and is used to confirm that the

proposed automatic method can also accelerate it. The data

size used is LARGE (512*256*256).

MRI-Q (39) is an MRI image processing software that

calculates the Q matrix that represents the scanner settings

for calibration. MRI-Q is used in 3D MRI reconstruction

algorithms in non-Carthean space. In many fields such as

IoT, image processing is often required for automatic

monitoring of camera images, and offloading is important

to improve the throughput of image processing. MRI-Q

performs 3D MRI image processing, and the processing

time is measured using data of size 64*64*64.

(b) Evaluation method

The user requests offloading of four applications.

When the cloud platform receives the request, it analyzes

the application and offloads function blocks and loop

statements to the quantum computer, multi-core CPU, GPU,

and FPGA.

Usage fees: 90 USD/hour for quantum computers, 60

USD/month for normal CPU VMs, 140 USD/month for

multi-core CPU VMs, 200 USD/month for GPU VMs, and

700 USD/month for FPGA VMs. Usage fees are based on

market clouds.

Function block offloading trials will be performed as

follows.

Function blocks: Eigenvalue analysis problems,

NAS.BT, Himeno benchmark, MRI-Q.

Function block discovery method: Function blocks

contained in the code are matched with the code contained

in the code pattern DB using the similarity detection tool

Deckard.

Loop offloading trials are performed as follows.

A genetic algorithm is used for multi-core CPUs and

GPUs.

Offloading targets and number of loop statements:

eigenvalue analysis problem 0, NAS.BT 120, Himeno

benchmark 13, MRI-Q 12.

Number of individuals M: Less than the number of

loop statements (NAS.BT 20, Himeno benchmark 10,

MRI-Q 10)

Number of generations T: Less than the number of loop

statements (NAS.BT 20, Himeno benchmark 10, MRI-Q

10)

Goodness of fit: (processing time)$^{-1/2}$

The shorter the processing time, the higher the

goodness of fit. Also, by raising it to the (-1/2) th power, the

goodness of fit of a specific individual with a short

processing time is prevented from becoming too high,

narrowing the search range. Also, if the performance

measurement does not end within the fixed time of 3

minutes, a timeout is triggered and the goodness of fit is

calculated with the processing time set to the infinity.

Selection: Roulette selection. However, the best-fit

genes in a generation are preserved in the next generation

without crossover or mutation, so elite preservation is also

performed.

Crossover rate Pc: 0.9

Mutation rate Pm: 0.05

For FPGAs, measurements are made after narrowing

down the results.

Narrowing down by arithmetic intensity: Narrow down

to the top 5 loop statements in arithmetic intensity analysis.

Narrowing down by resource efficiency: Narrow down

to the top 3 loop statements in resource efficiency analysis

(select the top 3 loop statements with the highest arithmetic

intensity/resource amount).

Number of offload patterns actually measured: 4 (The

first time, the top 3 loop statement offload patterns are

measured, and the second time, the combination pattern of

the two loop statement offloads that had the highest

performance in the first time are measured.

Performance measurement: Processing time is

measured with the sample parameters unchanged.

Under the above conditions, a function block offload

trial and a loop statement offload trial are performed, the

Fig. 3. Performance measurement environment

processing time during offload processing is measured, and

the measurement results and usage fees for the four

applications are presented to the user.

(c) Evaluation environment

The quantum computer used is Azure Quantum, and

processing is performed via the Internet through a Qiskit

implementation for quantum computers. The multi-core

CPU used is an AMD Ryzen Threadripper 2990WX (32

cores), and OpenMP processing uses gcc 10.1. The GPU

used is an NVIDIA GeForce RTX 2080 Ti (CUDA core:

4352, Memory: GDDR6 11GB), and OpenACC processing

uses PGI compiler 19.10 and CUDA Toolkit 10.1. Ryzen

and GeForce are installed on the same node. The FPGA

used is an Intel PAC D5005 (Intel Stratix 10 GX FPGA).

The compilation machine is a DELL EMC PowerEdge

R740 (CPU: Intel Xeon Bronze 3206R *2, RAM: 32GB

RDIMM * 4), and OpenCL is compiled with Intel

Acceleration Stack 2.0. The evaluation environment and

specifications are shown in Figure 3. Here, the C/C++

language applications used by the user is specified from the

client notebook PC, and the verification machine uses

Deckard to match and search the DB on the same node. The

processing time is measured by the verification machine

and appropriate hardware is determined and deployed in a

production environment used by actual users.

4.2 Results

Figure 4 shows the processing time, performance

improvement, and cost performance when the normal CPU

VM is set as 1 when four applications are offloaded to a

mixed environment using the proposed method. The four

Fig. 4. Results of offloading 4 applications to a mixed

environment

applications select hardware with high cost performance.

First, eigenvalue analysis problems are often

unsolvable by normal CPUs, but by offloading to a

quantum computer, the processing is completed in about 15

seconds. Next, in the loop offload trial of NAS.BT, a

multi-core CPU was automatically selected as the

appropriate offload destination, and the performance was

more than 5 times that of a normal CPU and the cost

performance was 2.3 times that of a normal CPU. Next, in

the loop offload trial of Himeno benchmark, a GPU was

automatically selected as the appropriate offload destination,

and the performance was more than 20 times that of a

normal CPU and the cost performance was 6.6 times that of

a normal CPU. Next, in the loop offload trial of MRI-Q, an

FPGA was automatically selected as the appropriate offload

destination, and the performance was more than 11 times

that of a normal CPU and the cost performance was 1.01

times that of a normal CPU (generally, FPGA instances cost

about 10 times the usage fee of a normal CPU VM, and the

cost performance is not so high).

The time it takes to offload is completed in seconds or

minutes for a function block offloading trial, but it takes

time for a loop statement offloading trial. In the case of a

multi-core CPU or GPU, it depends on the number of

measurements in GA, but in the case of NAS.BT and other

cases where there are many for statements, it takes about 8

hours. In the case of FPGA, it takes about 8 hours to

compile OpenCL and perform one measurement, so the

more measurements there are, the longer it takes. In

addition, because Azure is used as an external service, when

the user, not the service provider, contracts with Azure, an

examination is required, so a certain amount of time and

operation is required before the contract can be made.

5. Conclusions

In this paper, we proposed a method to automatically

Applications
Offloading
destination

Performance
improvement

Processing
time

Cost performance
[/Offloading VM fee
/normal CPU VM fee]

Eigenvalue
solvers

Quantum
computer

15.7 sec

NAS.BT multi-core
CPU

5.39 24.1 sec 2.31

Himeno
benchmark

GPU 22 1.87 sec 6.59

MRI-Q
FPGA 11.8 2.21 sec 1.01

offload user-provided applications to an environment that

includes a mixture of normal CPUs, multi-core CPUs,

GPUs, FPGAs, and quantum computers as part of the

environment-adaptative software we have proposed.

The automatic offload trial for each individual piece of

hardware uses the previous method proposed by the author.

First, the user application is analyzed. Based on syntax tree

similarity using Deckard etc., function block offload trials

are performed on multi-core CPUs, GPUs, FPGAs and

quantum computers, and the number of times faster it is

compared to a normal CPU is obtained for each piece of

hardware. Next, regardless of whether function block

offload is possible, loop statement offload trials using

evolutionary computing are performed on multi-core CPUs,

GPUs and FPGAs. The number of times faster is divided by

the monthly usage fee for each piece of hardware to find

cost performance. The application is automatically

offloaded to the hardware with the best cost performance,

which is higher than that of a normal CPU.

In this verification, four user applications - eigenvalue

analysis problems, NAS.BT, Himeno benchmark, and

MRI-Q - were analyzed and performance measured, and the

effectiveness of the method was confirmed by

automatically offloading them to a quantum computer,

multi-core CPU, GPU, and FPGA, respectively.

References

(1) A. Putnam, et al., "A reconfigurable fabric for

accelerating large-scale datacenter services,"

Proceedings of the 41th Annual International

Symposium on Computer Architecture (ISCA'14),

pp.13-24, June 2014.

(2) O. Sefraoui, et al., "OpenStack: toward an open-source

solution for cloud computing," International Journal of

Computer Applications, Vol.55, No.3, 2012.

(3) Y. Yamato, "Automatic Verification for Plural Virtual

Machines Patches," The 7th International Conference

on Ubiquitous and Future Networks (ICUFN 2015),

pp.837-838, July 2015.

(4) Y. Yamato, "Optimum Application Deployment

Technology for Heterogeneous IaaS Cloud," Journal of

Information Processing, Vol.25, No.1, pp.56-58, 2017.

(5) Y. Yamato, "Cloud Storage Application Area of

HDD-SSD Hybrid Storage, Distributed Storage and

HDD Storage," IEEJ Transactions on Electrical and

Electronic Engineering, Vol.11, Issue.5, pp.674-675,

DOI:10.1002/tee.22287, Sep. 2016.

(6) Y. Yamato, et al., "Fast Restoration Method of Virtual

Resources on OpenStack," IEEE Consumer

Communications and Networking Conference (CCNC

2015), pp.607-608, Jan. 2015.

(7) AWS EC2 web site,

https://aws.amazon.com/ec2/instance-types/

(8) M. Hermann, et al., "Design Principles for Industrie 4.0

Scenarios," Rechnische Universitat Dortmund. 2015.

(9) H. Noguchi, et al., "Autonomous Device Identification

Architecture for Internet of Things," 2018 IEEE 4th

World Forum on Internet of Things (WF-IoT 2018),

pp.407-411, Feb. 2018.

(10) M. Takemoto, et al.,"Service-composition method and

its implementation in service-provision architecture for

ubiquitous computing environments," IPSJ Journal,

Vol.46, No.2, pp.418-433, Feb. 2005.

(11) H. Noguchi, et al., "Distributed Search Architecture for

Object Tracking in the Internet of Things," IEEE

Access, DOI: 10.1109/ACCESS.2018.2875734, 2018.

(12) Y. Yamato, et al., "Ubiquitous Service Composition

Technology for Ubiquitous Network Environments,"

IPSJ Journal, Vol.48, No.2, pp.562-577, Feb. 2007.

(13) M. Takemoto, et al., "Service Elements and Service

Templates for Adaptive Service Composition in a

Ubiquitous Computing Environment," The 9th

Asia-Pacific Conference on Communications (APCC

2003), Vol.1, pp.335-338, Sep. 2003.

(14) Y. Yamato, et al., "Method of Service Template

Generation on a Service Coordination Framework,"

2nd International Symposium on Ubiquitous

Computing Systems (UCS 2004), Nov. 2004.

(15) Y. Yamato, et al., "Proposal of Real Time Predictive

Maintenance Platform with 3D Printer for Business

Vehicles," International Journal of Information and

Electronics Engineering, Vol. 6, pp.289-293, 2016.

(16) P. C. Evans and M. Annunziata, "Industrial Internet:

Pushing the Boundaries of Minds and Machines,"

Technical report of General Electric (GE), Nov. 2012.

(17) J. E. Stone, et al., "OpenCL: A parallel programming

standard for heterogeneous computing systems,"

Computing in science & engineering, Vol.12, No.3,

pp.66-73, 2010.

(18) T. Sterling, et al., "High performance computing :

modern systems and practices," Cambridge, MA :

Morgan Kaufmann, ISBN 9780124202153, 2018.

(19) J. Sanders and E. Kandrot, "CUDA by example : an

introduction to general-purpose GPU programming,"

Addison-Wesley, 2011.

(20) Y. Yamato, "Proposal and evaluation of GPU

offloading parts reconfiguration during applications

operations for environment adaptation," Journal of

Network and Systems Management, Springer, DOI:

10.1007/s10922-023-09789-2, Nov. 2023.

(21) Y. Yamato, "Study and Evaluation of Automatic

Offloading Method in Mixed Offloading Destination

Environment," Cogent Engineering, Taylor and Francis,

Vol.9, Issue 1, DOI: 10.1080/23311916.2022.2080624,

June 2022.

(22) Y. Yamato, "Automatic Offloading Method of Loop

Statements of Software to FPGA," International

Journal of Parallel, Emergent and Distributed Systems,

Taylor and Francis, DOI:

10.1080/17445760.2021.1916020, Apr. 2021.

(23) Y. Yamato, "Improvement Proposal of Automatic GPU

Offloading Technology," The 8th International

Conference on Information and Education Technology

(ICIET 2020), pp.242-246, Mar. 2020.

(24) Y. Yamato, "Proposal of Automatic GPU Offloading

Method from Various Language Applications," The 9th

International Conference on Information and Education

Technology (ICIET 2021), pp.400-404, Mar. 2021.

(25) Y. Yamato, "Proposal of Automatic Offloading for

Function Blocks of Applications," The 8th IIAE

International Conference on Industrial Application

Engineering 2020 (ICIAE 2020), pp.4-11, Mar. 2020.

(26) Y. Yamato, "Study and Evaluation of Automatic GPU

Offloading Method from Various Language

Applications," International Journal of Parallel,

Emergent and Distributed Systems, Taylor and Francis,

DOI: 10.1080/17445760.2021.1971666, Sep. 2021.

(27) Y. Yamato, "Study and Evaluation of Improved

Automatic GPU Offloading Method," International

Journal of Parallel, Emergent and Distributed Systems,

Taylor and Francis, DOI:

10.1080/17445760.2021.1941010, June 2021.

(28) Azure quantum website,

https://azure.microsoft.com/products/quantum/

(29) S. Wienke, et al., "OpenACC-first experiences with

real-world applications," Euro-Par 2012 Parallel

Processing, pp.859-870, 2012.

(30) M. Wolfe, "Implementing the PGI accelerator model,"

ACM the 3rd Workshop on General-Purpose

Computation on Graphics Processing Units, pp.43-50,

Mar. 2010.

(31) E. Su, et al., "Compiler support of the workqueuing

execution model for Intel SMP architectures," In

Fourth European Workshop on OpenMP, Sep. 2002.

(32) Clang website, http://llvm.org/

(33) Deckard website, http://github.com/skyhover/Deckard

(34) Qiskit website, https://www.ibm.com/quantum/qiskit

(35) ROSE framework website,

http://rosecompiler.org/ROSE_HTML_Reference/inde

x.html

(36) Eigenvalue Solver website,

https://learning.quantum.ibm.com/course/variational-al

gorithm-design/instances-and-extensions

(37) NAS.BT website,

https://www.nas.nasa.gov/publications/npb.html

(38) Himeno benchmark web site,

http://accc.riken.jp/en/supercom/

(39) MRI-Q website, http://impact.crhc.illinois.edu/parboil/

	名称未設定

	Title: Study of program placement optimization in mixed environments in environmental adaptation
	Citation: The 13th IIAE International Conference on Industrial Application Engineering 2025 (ICIAE 2025), pp.327-334
	Publisher: The Institute of Industrial Applications Engineers, Japan
	Note:
	yyyy: 2025
	mm: 3
	dd: 26
	version(English): [Author Accepted Manuscript(AAM)]
	version(Japanese): [(受理済)著者最終稿(AAM)]
	_: ‘I‘ð“à—e1
	__: Off
	Author(s): Yoji Yamato
	DOI: https://doi.org/10.12792/iciae2025.053

