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Abstract 

In recent years, the number of applications using 

heterogeneous hardware such as FPGAs and GPUs has 

been increasing. However, to fully utilize them, an 

understanding of the hardware is necessary, which is a high 

barrier. Based on this background, we have proposed 

environment-adaptive software that automatically converts 

code written by programmers for normal CPUs according 

to the deployment environment, enabling high performance 

operation. This paper targets automatic offloading to 

appropriate hardware in a mixed environment that contains 

normal CPUs, multi-core CPUs, FPGAs, GPUs, and 

quantum computers. We confirm how much the 

performance of normal CPUs can be achieved with each 

hardware, and based on cost performance, we determine the 

appropriate hardware for offloading and perform automatic 

offloading. We confirm that the proposed method can 

automatically offload by measuring the processing time 

using actual heterogeneous hardware. 

Keywords: Environment-Adaptive Software, Automatic 

Offloading, Quantum Computer, Mixed Environment, 

Hardware Selection. 

1. Introduction 

It is said that there are some aspects of Moore's Law 

that expect CPUs (Central Processing Units) to become 

faster over time that are no longer compatible with it. As a 

result, in addition to normal CPUs, the use of 

heterogeneous hardware such as multi-core CPUs, FPGAs 

(Field Programmable Gate Arrays), and GPUs (Graphics 

Processing Units) is increasing in applications. For example, 

Microsoft has stated the use of FPGAs for search (1), and 

Amazon provides FPGAs and GPUs as cloud (e.g., (2)-(6)) 

instances (7). In addition to FPGAs and GPUs, the number 

of IoT devices is also increasing (e.g., (8)-(16)), and new 

types of hardware such as DPUs (Data Processing Units) 

and quantum computers are also emerging. 

However, in order to accelerate on heterogeneous 

hardware, it is necessary to configure and write code with 

consideration for the characteristics of the hardware, and 

programming skills using C language extensions such as 

OpenCL (Open Computing Language) (17), OpenMP 

(Open Multi-Processing) (18), and CUDA (Compute 

Unified Device Architecture) (19) are desirable. Therefore, 

for many programmers who have become accustomed to 

using scripting languages such as PHP and Python, the skill 

hurdle is high. 

Heterogeneous hardware systems such as FPGAs, 

GPUs, and quantum computers can also reduce power 

consumption and are expected to develop in the future, but 

the skill hurdle is high to use them. Therefore, a new 

platform that can fully utilize heterogeneous hardware 

without the hurdles will be important, which converts and 

configures software written by programmers in the same 

way as usual, and adapts it to the environment (FPGA, 

GPU, quantum computer, etc.) where it will be deployed. 

Therefore, we have proposed environment-adaptive 

software that automatically converts existing software code 

for FPGAs and GPUs and automatically sets the amount of 

resources so that the code can be used in the deployment 

environment, thereby accelerating applications. As 

environment-adaptive software elements, we are evaluating 

methods to automatically offload loop statements and 

function blocks of existing code to FPGAs, GPUs, quantum 

computers, etc. (20)-(27). 

However, our verification so far has focused mainly on 

automating offloading to individual hardware such as 

FPGAs, GPUs, and quantum computers, and appropriate 



 

 

offloading to a mixed environment has not been considered. 

For example, even if GPU offloading provides 10 times the 

performance and FPGA offloading provides 20 times the 

performance, if the monthly cloud usage fee for an FPGA 

instance is three times that of a GPU instance, GPU 

offloading may be appropriate. 

This paper focuses on automatic offloading to 

appropriate hardware in a mixed environment that includes 

normal CPUs, multi-core CPUs, FPGAs, GPUs, and 

quantum computers. First, we analyze the existing 

application to be offloaded, find the offloadable parts, and 

attempt to offload to each hardware using the existing 

proposed method. We confirm how many times the 

performance of a normal CPU can be achieved with each 

hardware, and based on the cost performance determined 

from the cloud usage fee for that hardware, we determine 

the appropriate hardware for offloading and automatically 

offload it. We confirm that the proposed method can 

automatically offload by measuring the processing time 

using actual heterogeneous hardware: AMD Ryzen, Intel 

Stratix, NVIDIA Geforce, and Microsoft Azure Quantum 

(28). 

2. Existing Technologies 

2.1 Market technologies 

NVIDIA has proposed CUDA for development of 

GPGPU (General Purpose GPU). CUDA is targeted at GPU, 

but OpenCL has been proposed for handling heterogeneous 

hardware such as GPU, multi-core CPU, and FPGA, and 

various companies provide tools for it. CUDA and OpenCL 

require C language extension program writing, which is 

difficult (e.g., releasing and copying data in memory 

between kernels such as FPGA and CPU host). 

Unlike CUDA and OpenCL, there are compilers that 

specify the part to be processed on a directive basis and 

create binary files for GPUs and so on according to the 

directive, in order to easily use heterogeneous hardware. 

Specifications include OpenACC (9) and OpenMP, and 

compilers include PGI compiler (30) and gcc. 

GPU, multi-core CPU, and FPGA offloading is 

possible using CUDA, OpenCL, OpenACC, OpenMP, etc. 

However, even if processing is performed, it is difficult to 

speed up. For example, Intel compiler (31) is used for 

multi-core CPU parallelization. This parallelizes the parts 

of the loop that can be processed in parallel. However, 

simply parallelizing the loop does not speed up the process 

mainly for memory usage problems. When speeding up the 

process using a GPU, CUDA experts perform tuning work 

and use a compiler to search for suitable parallel processing 

parts. As an automated search method, the author proposes 

offloading using evolutionary computing. 

Quantum computers are computers that apply quantum 

mechanics. There has been an increase in research and 

development of quantum computers using the versatile 

quantum gate method. Many companies, including 

Microsoft, Amazon, IBM, and Google, are working on this. 

Azure Quantum and AWS Braket are provided as functions 

of Microsoft's Azure clouds and Amazon's AWS clouds, 

respectively, and allow for time-based use of the cloud, 

with no initial costs for quantum computers. However, the 

current situation is that quantum algorithms for solving 

prime factorization and knapsack problems and so on using 

quantum computers are devised by experts and 

implemented one by one, and they are not easily accessible 

to general users. 

2.2 Outline of environment-adaptive software 

We have proposed environment-adaptive software with 

the processing overview shown in Figure 1. The 

environment-adaptive function provided by the operator is 

at the core, and the environment-adaptive software works 

by linking the production environment, verification 

environment, equipment resource DB, test case DB, and 

code pattern DB. 

Step 1: Analysis of user-provided code. Step 2: 

Extraction of offloadable parts. Step 3: Search for 

appropriate offload parts. Step 4: Adjustment of production 

resource amount. Step 5: Adjustment of production 

deployment location. Step 6: Production deployment of 

binary files and verification. Step 7: Reconfiguration during 

production operation. 

User provided code is analyzed, and before production 

operation begins, in Steps 1-6, code conversion, resource  

 
Fig. 1.  Processing outline of environment-adaptive 

software 



 

 

 

adjustment, placement location adjustment, and operation  

verification are performed through verification environment 

performance measurement tests. In Step 7, after production 

operation begins, actual usage data is analyzed, and 

reconfiguration is performed if it is clear that a 

configuration change is appropriate. 

2.3 Problems in this paper 

Now, we summarize the problems. Acceleration using 

heterogeneous hardware requires manual work by an expert. 

We have previously proposed environment-adaptive 

software and realized an automatic offloading method for 

FPGAs, GPUs, and quantum computers. However, until 

now the aim was to automate offloading for individual 

hardware, and appropriate offloading in a mixed 

environment had not been fully considered. For example, 

even if a GPU provides 10 times the performance and an 

FPGA provides 20 times the performance, if the usage fee 

for FPGAs is three times that of GPUs, then GPUs would 

be appropriate. Therefore, this paper targets automatic 

offloading to appropriate hardware in an environment that 

contains normal CPUs, multi-core CPUs, FPGAs, GPUs, 

and quantum computers. We propose an appropriate 

automatic offloading method for a mixed environment and 

confirm the proposed method using a real heterogeneous 

hardware mixed environment. 

3. Offloading to a mixed environment 
including quantum computers 

Offloading to individual hardware is attempted using 

the previous proposed method. First, we use a syntax 

analysis library such as Clang (32) to understand the 

program structure, and then attempt to offload it to a 

quantum computer. In quantum computer offloading, 

function block offloading is performed, so after the 

quantum computer, a search is performed to see if there is a 

library equivalent that can be used with multi-core CPUs, 

GPUs, and FPGAs. If found, the function block offloading 

is performed and performance is measured. Regardless of 

whether function block offloading is possible or not, after 

the function block offloading attempt, loop statement 

offloading is attempted in the order of multi-core CPUs, 

GPUs, and FPGAs, and performance is measured with the 

final solution of evolutionary computation. Since 

performance measurement results for all patterns are 

obtained, the cost performance is calculated based on the  

 
Fig. 2.  An appropriate automatic offloading method for 

mixed environments 

 

usage fee for each hardware, and the appropriate hardware 

is selected. 

The details of the proposed method are explained using 

Figure 2. 

3.1 Function block offloading trial 

Function block offloading trials are performed for each 

hardware, including quantum computers. We use similarity 

detection tools such as Deckard (33) to discover whether 

there are any functional blocks that can be offloaded to each 

hardware. A similarity detection tool is a tool that makes it 

possible to detect similar code, such as code that has been 

copied and then modified. Similarity detection uses 

similarities in abstract syntax trees, vocabulary, lines, 

program dependency graphs, fingerprints and so on. This 

time, we use a tool that confirms abstract syntax trees. 

When a function block that can be offloaded is found, 

it is replaced with a processing part (equivalent to a library) 

that uses the hardware corresponding to that code registered 

in the code pattern DB, and offloaded. When using a 

quantum computer, it is based on a quantum algorithm and 

is implemented using one of the following. Qiskit (34) is a 

quantum computer framework open sourced by IBM, Cirq 

is a quantum computer framework open sourced by Google, 

and Q¥# is a programming language for quantum 

computers proposed by Microsoft. When using a multi-core 

CPU instead of a quantum computer, it is replaced with an 

OpenMP file that specifies the multi-core CPU library, 

when using a GPU, it is replaced with an OpenACC file 

that specifies the GPU library, and when using an FPGA, it 

is replaced with an OpenCL file that corresponds the FPGA 

IP core. 

When an offload function block is found and replaced 

with a processing part, the processing time when offloaded 

and the processing time when executed on a normal CPU 

are measured again, and the performance improvement 

degree when offloaded is obtained. 

3.2 Loop statement offloading trial  

Loop statement offloading trials are performed for each 

hardware. The structure of the for statement in the user 



 

 

application is understood using a syntax analysis library. 

For multiple for statements, patterns are created for whether 

or not to offload to hardware, and a fast offload pattern is 

found through repeated performance measurements in the 

verification environment. This is common to all hardware. 

The verification order may change, but the basic order is 

multi-core CPU, GPU, and FPGA. This is because FPGAs 

in particular take a long time from compilation to actual 

device measurement, so if reasonably good results are 

obtained in multi-core CPU and GPU offloading trials that 

take a similar amount of processing time, they can be 

skipped. 

In trials in the verification environment, for multi-core 

CPUs and GPUs, methods such as (20) are used to measure 

multiple patterns of whether or not for statements can be 

offloaded, using GA, an evolutionary computing method, to 

find a fast pattern. Based on methods such as (22), FPGA 

narrows down candidate loop statements based on 

arithmetic intensity, loop count, and resource amount 

analyzed using the ROSE framework (35), and then 

measures the performance of multiple patterns in the 

verification environment to find a high-speed offload 

pattern. The final solution is an OpenMP file for multi-core 

CPUs, an OpenACC file for GPUs, and an OpenCL file for 

FPGAs. 

Performance measurements are repeated along the way, 

and the processing time when offloaded with the final 

solution and the processing time when executed on a 

normal CPU are measured again to obtain the degree of 

performance improvement when offloading. 

3.3 Hardware selection based on cost performance  

There are cases where offloading is not possible 

because a replaceable part cannot be found, or where 

offloading does not improve performance, up to seven 

patterns are available, including offloading function blocks 

to quantum computers, multi-core CPUs, GPUs, and 

FPGAs, and offloading loop statements to multi-core CPUs, 

GPUs, and FPGAs. Basically, function block offloading 

replaces a dedicated processing part (equivalent to a 

library), so the degree of speedup is often large. In (25), 

when the CPU's Fourier transform processing was replaced 

with the GPU library cuFFT, the performance was 730 

times higher. Therefore, if function block offloading is 

possible, the selection of hardware corresponding to the 

processing part is a strong candidate. On the other hand, if 

function block offloading is not possible and only loop 

statements are offloaded, it is necessary to decide which 

hardware is appropriate for offloading. 

Therefore, we propose a method to determine using the 

cost performance based on user requests. The degree of 

improvement compared to a normal CPU is measured for 

seven offloading patterns. Here, when processing with a 

quantum computer, most problems cannot be solved by a 

CPU in the first place, and a normal CPU will time out, so 

there is no need to calculate the degree of improvement. 

Specifically, the degree of improvement for each offloading 

pattern is divided by the offloading hardware usage fee 

(monthly usage fee for cloud instances) to determine the 

cost performance. If the cost performance is higher than 

that of a normal CPU and is the highest across all patterns, 

that hardware is appropriate, so it is selected as the system 

and proposed to the user. 

For example, if a VM with a normal CPU costs 60 

USD/Month, a VM with a GPU costs 200 USD/Month, and 

a VM with an FPGA costs 700 USD/Month, and an 

application achieves 10 times the performance of a normal 

CPU with GPU offloading and 20 times the performance of 

a normal CPU with FPGA offloading, the cost performance 

is calculated. In this case, GPU offloading is determined to 

be appropriate, so it is proposed to the user. 

4. Evaluation 

The effectiveness of the method is evaluated by 

confirming that four applications specified by the user can 

be automatically offloaded to a mixed environment of 

quantum computers, multi-core CPUs, GPUs, and FPGAs 

in an appropriate manner and that cost-effective hardware is 

selected. 

4.1 Evaluation conditions  

(a) Evaluated targets 

There are four applications. 

The evaluation target is an eigenvalue analysis problem. 

For high-dimensional complex matrices, there is no 

calculation procedure that can accurately express 

eigenvalues with a finite number of algebraic operations. 

For this reason, iterative methods have traditionally been 

used for numerical analysis of eigenvalue problems. This 

can be accelerated by utilizing the superposition property of 

quantum states of quantum computers. The essence of the 

problem is to find the eigenvalues of the associated matrix 

of a general n-th order algebraic equation, and each 

problem is determined by differences in parameters. The 

eigenvalue analysis problem used is (36). As (36) shows, 



 

 

the solution of eigenvalue analysis problems on quantum 

computers is also implemented in Qiskit using quantum 

algorithms. 

There is NAS.BT (37), a block diagonal solver 

calculation. A block diagonal solver is a numerical solution 

method for partial differential equations. There are various 

types and implementations of numerical calculations. We 

use NAS.BT (NASA block triangular solver) (37) as an 

example of a medium-scale numerical calculation 

application with more than 100 loop statements. The 

parameters are CLASS A settings, grid size is 64*64*64, 

number of iterations is 200, and time step is 0.0008. 

Himeno Benchmark (38) is a benchmark software used 

to measure the performance of incompressible fluid 

analysis, and solves the Poisson equation using the Jacobi 

iteration method. It is frequently used for manual 

acceleration on accelerators, and is used to confirm that the 

proposed automatic method can also accelerate it. The data 

size used is LARGE (512*256*256). 

MRI-Q (39) is an MRI image processing software that 

calculates the Q matrix that represents the scanner settings 

for calibration. MRI-Q is used in 3D MRI reconstruction 

algorithms in non-Carthean space. In many fields such as 

IoT, image processing is often required for automatic 

monitoring of camera images, and offloading is important 

to improve the throughput of image processing. MRI-Q 

performs 3D MRI image processing, and the processing 

time is measured using data of size 64*64*64. 

(b) Evaluation method 

The user requests offloading of four applications. 

When the cloud platform receives the request, it analyzes 

the application and offloads function blocks and loop 

statements to the quantum computer, multi-core CPU, GPU, 

and FPGA. 

Usage fees: 90 USD/hour for quantum computers, 60 

USD/month for normal CPU VMs, 140 USD/month for 

multi-core CPU VMs, 200 USD/month for GPU VMs, and 

700 USD/month for FPGA VMs. Usage fees are based on 

market clouds. 

 

Function block offloading trials will be performed as 

follows. 

Function blocks: Eigenvalue analysis problems, 

NAS.BT, Himeno benchmark, MRI-Q. 

Function block discovery method: Function blocks 

contained in the code are matched with the code contained 

in the code pattern DB using the similarity detection tool 

Deckard. 

 

Loop offloading trials are performed as follows. 

A genetic algorithm is used for multi-core CPUs and 

GPUs. 

Offloading targets and number of loop statements: 

eigenvalue analysis problem 0, NAS.BT 120, Himeno 

benchmark 13, MRI-Q 12. 

Number of individuals M: Less than the number of 

loop statements (NAS.BT 20, Himeno benchmark 10, 

MRI-Q 10) 

Number of generations T: Less than the number of loop 

statements (NAS.BT 20, Himeno benchmark 10, MRI-Q 

10) 

Goodness of fit: (processing time)$^{-1/2}$ 

The shorter the processing time, the higher the 

goodness of fit. Also, by raising it to the (-1/2) th power, the 

goodness of fit of a specific individual with a short 

processing time is prevented from becoming too high, 

narrowing the search range. Also, if the performance 

measurement does not end within the fixed time of 3 

minutes, a timeout is triggered and the goodness of fit is 

calculated with the processing time set to the infinity. 

Selection: Roulette selection. However, the best-fit 

genes in a generation are preserved in the next generation 

without crossover or mutation, so elite preservation is also 

performed. 

Crossover rate Pc: 0.9 

Mutation rate Pm: 0.05 

 

For FPGAs, measurements are made after narrowing 

down the results. 

Narrowing down by arithmetic intensity: Narrow down 

to the top 5 loop statements in arithmetic intensity analysis. 

Narrowing down by resource efficiency: Narrow down 

to the top 3 loop statements in resource efficiency analysis 

(select the top 3 loop statements with the highest arithmetic 

intensity/resource amount). 

Number of offload patterns actually measured: 4 (The 

first time, the top 3 loop statement offload patterns are 

measured, and the second time, the combination pattern of 

the two loop statement offloads that had the highest 

performance in the first time are measured. 

 

 

Performance measurement: Processing time is 

measured with the sample parameters unchanged. 

Under the above conditions, a function block offload 

trial and a loop statement offload trial are performed, the 



 

 

 

Fig. 3.  Performance measurement environment  

 

processing time during offload processing is measured, and 

the measurement results and usage fees for the four 

applications are presented to the user. 

(c) Evaluation environment 

The quantum computer used is Azure Quantum, and 

processing is performed via the Internet through a Qiskit 

implementation for quantum computers. The multi-core 

CPU used is an AMD Ryzen Threadripper 2990WX (32 

cores), and OpenMP processing uses gcc 10.1. The GPU 

used is an NVIDIA GeForce RTX 2080 Ti (CUDA core: 

4352, Memory: GDDR6 11GB), and OpenACC processing 

uses PGI compiler 19.10 and CUDA Toolkit 10.1. Ryzen 

and GeForce are installed on the same node. The FPGA 

used is an Intel PAC D5005 (Intel Stratix 10 GX FPGA). 

The compilation machine is a DELL EMC PowerEdge 

R740 (CPU: Intel Xeon Bronze 3206R *2, RAM: 32GB 

RDIMM * 4), and OpenCL is compiled with Intel 

Acceleration Stack 2.0. The evaluation environment and 

specifications are shown in Figure 3. Here, the C/C++ 

language applications used by the user is specified from the 

client notebook PC, and the verification machine uses 

Deckard to match and search the DB on the same node. The 

processing time is measured by the verification machine 

and appropriate hardware is determined and deployed in a 

production environment used by actual users. 

4.2 Results  

Figure 4 shows the processing time, performance 

improvement, and cost performance when the normal CPU 

VM is set as 1 when four applications are offloaded to a 

mixed environment using the proposed method. The four 

 

Fig. 4.  Results of offloading 4 applications to a mixed 

environment 

 

applications select hardware with high cost performance. 

First, eigenvalue analysis problems are often 

unsolvable by normal CPUs, but by offloading to a 

quantum computer, the processing is completed in about 15 

seconds. Next, in the loop offload trial of NAS.BT, a 

multi-core CPU was automatically selected as the 

appropriate offload destination, and the performance was 

more than 5 times that of a normal CPU and the cost 

performance was 2.3 times that of a normal CPU. Next, in 

the loop offload trial of Himeno benchmark, a GPU was 

automatically selected as the appropriate offload destination, 

and the performance was more than 20 times that of a 

normal CPU and the cost performance was 6.6 times that of 

a normal CPU. Next, in the loop offload trial of MRI-Q, an 

FPGA was automatically selected as the appropriate offload 

destination, and the performance was more than 11 times 

that of a normal CPU and the cost performance was 1.01 

times that of a normal CPU (generally, FPGA instances cost 

about 10 times the usage fee of a normal CPU VM, and the 

cost performance is not so high). 

The time it takes to offload is completed in seconds or 

minutes for a function block offloading trial, but it takes 

time for a loop statement offloading trial. In the case of a 

multi-core CPU or GPU, it depends on the number of 

measurements in GA, but in the case of NAS.BT and other 

cases where there are many for statements, it takes about 8 

hours. In the case of FPGA, it takes about 8 hours to 

compile OpenCL and perform one measurement, so the 

more measurements there are, the longer it takes. In 

addition, because Azure is used as an external service, when 

the user, not the service provider, contracts with Azure, an 

examination is required, so a certain amount of time and 

operation is required before the contract can be made. 

5. Conclusions 

In this paper, we proposed a method to automatically 

Applications
Offloading
destination

Performance
improvement

Processing
time

Cost performance
[/Offloading VM fee
/normal CPU VM fee]

Eigenvalue
solvers

Quantum
computer

15.7 sec

NAS.BT multi-core
CPU

5.39 24.1 sec 2.31

Himeno
benchmark

GPU 22 1.87 sec 6.59

MRI-Q
FPGA 11.8 2.21 sec 1.01



 

 

offload user-provided applications to an environment that 

includes a mixture of normal CPUs, multi-core CPUs, 

GPUs, FPGAs, and quantum computers as part of the 

environment-adaptative software we have proposed. 

The automatic offload trial for each individual piece of 

hardware uses the previous method proposed by the author. 

First, the user application is analyzed. Based on syntax tree 

similarity using Deckard etc., function block offload trials 

are performed on multi-core CPUs, GPUs, FPGAs and 

quantum computers, and the number of times faster it is 

compared to a normal CPU is obtained for each piece of 

hardware. Next, regardless of whether function block 

offload is possible, loop statement offload trials using 

evolutionary computing are performed on multi-core CPUs, 

GPUs and FPGAs. The number of times faster is divided by 

the monthly usage fee for each piece of hardware to find 

cost performance. The application is automatically 

offloaded to the hardware with the best cost performance, 

which is higher than that of a normal CPU. 

In this verification, four user applications - eigenvalue 

analysis problems, NAS.BT, Himeno benchmark, and 

MRI-Q - were analyzed and performance measured, and the 

effectiveness of the method was confirmed by 

automatically offloading them to a quantum computer, 

multi-core CPU, GPU, and FPGA, respectively. 
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