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ABSTRACT  19 
The El Niño–Southern Oscillation (ENSO) likely continues to be the main mode of 20 
natural climate variability in a warmer climate. However, it is currently not known how 21 
the ENSO impacts on major crop yields would change in response to future climate 22 
change. Here, we present the projected ENSO impacts on yields of maize, wheat, rice and 23 
soybean in the middle (2035–2064) and end (2065–2094) of the 21st century under low 24 
(SSP126) and high (SSP585) warming scenarios. The climate-crop model ensemble used 25 
is limited in its ability to simulate the historical ENSO impacts, with variation by crop 26 
and ENSO phase. Particularly, the model ensemble’s ability was found to be low for rice 27 
and soybean. Consequently, the analysis presented here is restricted to wheat in the La 28 
Niña years and maize in the El Niño and La Niña years. The results indicate that ENSO 29 
would continue to be a noticeable driver of yield variations, both positively and negatively, 30 
for some crops and regions. For example, we detect projected positive maize yield impact 31 
in North America and the negative maize yield impact in eastern Brazil due to El Niño, 32 
although these projected impacts vary by time period and warming levels. Improvements 33 
to both climate and crop models are required to capture the process chains from ocean to 34 
atmosphere to agro-environment to crop productivity and help cropping systems better 35 
prepare for future climate risks. 36 
 37 
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 40 
1. INTRODUCTION 41 
 42 

The El Niño–Southern Oscillation (ENSO) is a major mode of natural climate 43 
variability that generally occurs once every few years. ENSO affects many natural and 44 
managed systems globally, including crop production by modulating growing season 45 
weather patterns, and can trigger multi-breadbasket crop failures (Iizumi et al. 2014, 46 
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Anderson et al.2019, Heino et al. 2020, Anderson et al. 2023). The ENSO impacts on 47 
crop yields have implications for international food trade and the acute food insecurity in 48 
vulnerable regions of the world and are therefore of interest to governmental and 49 
commercial entities (FAO 2016, Ubilava 2017, GEOGLAM 2023, Koo & Anderson, 50 
2023).  51 

While there is literature on the ENSO impacts in the historical past, to the best of our 52 
knowledge, it remains unclear how the yield impacts associated with ENSO would 53 
change in response to projected warming. Projected changes in ENSO behavior have been 54 
intensively studied using ensemble simulations of global climate models (GCMs). The 55 
accumulated evidence suggests that the ENSO will remain the main mode of interannual 56 
climate variability in a warmer world (Arias et al. 2021, Singh et al. 2022, Vaittinada 57 
Ayar et al. 2023) and most climate models tend to show an ENSO amplification in the 58 
end of the 21st century (Cai et al. 2022).  59 

To fill the knowledge gap, this study presents the global analysis of the ENSO impacts 60 
on yields of major crops in the middle (2035–2064) and end (2065–2094) of the 21st 61 
century under two emission scenarios from the Shared Socioeconomic Pathways (SSPs)–62 
Representative Concentration Pathways (RCPs): SSP1–RCP2.6 (SSP126) and SSP5–63 
RCP8.5 (SSP585). The former and latter represent low and high warming scenarios, 64 
respectively. We employed the recent climate-crop model ensemble, consisting of 12 65 
global gridded crop models (GGCMs), provided by the Agricultural Model 66 
Intercomparison and Improvement Project (AgMIP)'s Global Gridded Crop Model 67 
Intercomparison (GGCMI) and the Intersectoral Impact Model Intercomparison (ISIMIP) 68 
project phase 3 (Jägermeyr et al. 2021). We studied four major crops—maize, wheat, rice 69 
and soybean—that produce nearly two-thirds of global agricultural calories (Tilman et al. 70 
2011).  71 

The main questions addressed in this study are: (i) How well does the historical 72 
simulation of the climate–crop model ensemble represent the actual ENSO impacts, 73 
particularly average yield changes in El Niño (La Niña) years relative to neutral years? 74 
and (ii) What are the potential differences in ENSO impacts under the two warming levels 75 
and across the two future time periods? 76 
 77 
2. METHODS 78 
 79 
2.1. Climate-crop model ensemble 80 
2.1.1. Data 81 

We used the GGCMI multi-GGCM ensemble mean percent yield change projections 82 
(Jägermeyr et al. 2021, Jägermeyr et al. 2024). The data provided annual changes in yields 83 
of the four crops for the period 1983–2099, relative to the 1983–2013 baseline, at 0.5° 84 
resolution. To derive the yield projections, the bias-corrected daily outputs of five GCMs 85 
(Table S1 in ELECTRONIC SUPPLEMENTS) under high and low emission scenarios 86 
were used to force the GGCMs. The emission scenarios were the SSP126 and SSP585. 87 
The former represents a scenario with low greenhouse gas emissions and sustainable 88 
development, while the latter corresponds to a high-emission pathway characterized by 89 
rapid economic growth and intensive greenhouse gas emissions. The average percent 90 
yield change data of the 12 GGCMs were available for the current global harvested area 91 
for each crop; though, not all GGCMs provided projections for every crop (Table 1).  92 
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Among the five available GCMs, we selected the yield projections forced by two 93 
GCMs, MPI-ESM1-2-HR and MRI-ESM2-0, for use. We were aware of the “hot model” 94 
problem that several Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs 95 
which have very high equilibrium climate sensitivity (ECS) overestimate future warming 96 
(Hausfather et al. 2022). ECS is the change in global surface temperature relative to 97 
preindustrial levels when the atmospheric CO2 concentration doubles from 280 to 560 98 
ppm and the Earth's climate reaches a new equilibrium state. The five GCMs used in the 99 
GGCMI multi-GGCM ensemble were a subset of CMIP6 GCMs designed to sample their 100 
ECS range (1.83°C to 5.67°C; IPCC 2021) as broadly as possible for impact studies 101 
(Lange 2021). The two GCMs selected for this study were at the lower end in terms of 102 
ECS (MPI-ESM1-2-HR, 2.98 °C; MRI-ESM2-0, 3.15 °C; Table S1), which is interpreted 103 
as a low risk of overestimating future warming for the GCMs.  104 
 105 
Table 1. List of the GGCMs and modeling groups participating to the multi-GGCM 106 
ensemble average yield change dataset used for this study (Jägermeyr et al 2021).  107 

GGCM name Main modeling group Note Ref. 
ACEA University of Twente, The 

Netherlands 
- Mialyk et al. 

(2022) 
CROVER  National Institute for 

Environmental Studies, Japan 
- Okada et al. 

(2018) 
CYGMA (1p74)  National Agriculture and Food 

Research Organization, Japan 
no wheat Iizumi et al. 

(2017) 
DSSAT-Pythia University of Florida, USA no rice Hoogenboom 

et al. (2019) 
EPIC-IIASA International Institute for Applied 

Systems Analysis, Austria 
- Balkovič et 

al. (2014) 
ISAM University of Illinois, USA - Lin et al.  

(2021) 
LandscapeDNDC Karlsruhe Institute of Technology, 

Germany 
- Haas et al. 

(2012) 
LPJmL Potsdam Institute for Climate 

Impact Research, Germany 
- Von et al. 

(2018) 
pDSSAT Columbia University, University 

of Chicago, USA 
- Elliott et al. 

(2014) 
PEPIC Swiss Federal Institute of Aquatic 

Science and Technology, 
Switzerland 

- Liu et al. 
(2016) 

PROMET Ludwig-Maximilians-Universität 
München, Germany 

- Mauser et al. 
(2015) 

SIMPLACE-
LINTUL5+  

Leibniz Centre for Agricultural 
Landscape Research, Germany 

no rice Webber et al. 
(2018) 

 108 
2.1.2. Spatial imputation  109 

To adjust the yield projections to a 2010 baseline, we used SPAM2010 (Yu et al. 2020), 110 
which provides yields for the year 2010 (the average of 2009–2011). However, it was 111 
found that there were missing values in the percent yield change data in some parts of the 112 
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global harvested area in 2010. This was probably due to the inconsistencies between the 113 
global harvested area map used in the calculation of the multi-GGCM ensemble and 114 
SPAM2010 used in this study. We therefore spatially interpolated the data to fill the gaps.  115 

To do this, we built random forest (RF) models that estimate the percent yield change 116 
from the geographic information (longitude, latitude and elevation). The specific RF 117 
model was developed for each combination of crop, year, warming level and GCM and 118 
then estimated missing values for a given combination. The statistical software R (R Core 119 
Team 2024) was used for the model fitting. We used the randomForest package (Liaw & 120 
Wiener 2022) and the package’s default hyperparameter values, namely, number of trees 121 
(ntree)=500, number of predictors sampled at each split (mtry)=3 and minimum size of 122 
terminal nodes (nodesize)=5. When out-of-bug samples were evaluated, the model fit was 123 
as high as 0.60 (rice), 0.65 (wheat), 0.70 (maize) and 0.80 (soybean) for the coefficient 124 
of determination, and as low as 6.9 (rice), 7.7 (soybean), 8.0 (maize) and 9.5 (wheat) in 125 
units of percent point for the root-mean-squared residuals.  126 
 127 
2.1.3. Baseline harmonization 128 

After the spatial imputation, the yield projections were harmonized to have the 2010 129 
baseline instead of the original 1983–2013 baseline. We harmonized the yield projections 130 
to match the SPAM2010 dataset. This alignment ensures consistency with SPAM2010.  131 

Here we have two baseline periods. The first one was 1983–2013 and the second one 132 
was 2009–2011. The percent yield change for the year t relative to the first baseline period 133 
(%YC1) was given by: 134 

%𝑌𝐶ଵ,௧ ൌ  ିభ
భ

ൈ 100, (1) 135 

where Y is the annual yield (t ha–1); 𝑌 is the average yield for the given baseline period 136 
(t ha–1). Similar to above, the percent yield changes relative to the second baseline period 137 
(%YC2) was written as: 138 

%𝑌𝐶ଶ,௧ ൌ  ିమ
మ

ൈ 100. (2) 139 

Here yield anomaly in units of tones per hectare was respectively given by: 140 

∆𝑌ଵ ௧ ൌ 𝑌௧ െ 𝑌ଵ and ∆𝑌ଶ ௧ ൌ 𝑌௧ െ 𝑌ଶ. (3) 141 
With the assumption that ∆𝑌ଵ ௧ ൌ ∆𝑌ଶ ௧ , it was possible to convert the percent yield 142 
change value from the first baseline period to the second one: 143 

%𝑌𝐶ଶ,௧ ൌ 
ቆ

%ೊభ, ∙ೊభ
భబబ

ቇ

మ
 ൈ 100 ൌ %𝑌𝐶ଵ,௧ ∙

భ
మ

. (4) 144 

Although rare, the percent yield change value was replaced with –100% if the value 145 
calculated in the harmonization was negatively greater than this value. We thought that 146 
another assumption that %YC1,t=%YC2,t was inappropriate for this study. As the average 147 
yield in the second baseline period (2010) was generally higher than that in the first 148 
baseline period (1983–2013), the absolute value of yield anomaly in tons per hectare 149 
calculated using the equal-percent-yield-change assumption became greater in the second 150 
baseline period than that in the first baseline period. Therefore, we selected to keep yield 151 
anomaly in tons per hectare the same between the first and second baseline periods.  152 

The average yields of 1983–2013 (𝑌ଵ) and 2009–2011 (𝑌ଶ) were calculated using the 153 
country annual data available in the FAO statistical database (FAO 2024). Therefore, the 154 
harmonization we done was at the country level. At present, there is no global grid yield 155 
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dataset that can be used for grid-wise harmonization. The global dataset of historical 156 
yields (GDHY) (Iizumi et al. 2014, Iizumi & Sakai 2000) has missing values for a non-157 
negligible portion of the global cropland area. SPAM2000 has a base year of 2000 (You 158 
et al. 2014), which is not the same as the midpoint of the 1983–2013 period (i.e., 1998). 159 
More importantly, Yu et al. (2020) reports the presence of unrealistic disconnections in 160 
temporal change between SPAM2000 and SPAM2010 for some crops and regions, rooted 161 
in the different sources of information in the development of these datasets, which may 162 
ruin the harmonization.  163 
 164 
2.1.4. Detrending 165 

As elaborated in Jägermeyr et al. (2021), the percent yield change projections had long-166 
term trends due to the changes in climate and atmospheric CO2 concentration. Because 167 
the focus of the present study was on the yield impacts from ENSO, we distinguished 168 
between the interannual variability component of yield change, which was mainly driven 169 
by major climate mode (e.g., ENSO), and the trend component of yield change, which 170 
was associated with climate change. We calculated the 5-year running average series as 171 
the trend component and subtract it from the original percent yield change series to derive 172 
the interannual variability component (Fig. S1). Therefore, the percent yield anomalies 173 
studied here was the year-to-year deviation (affected by internal climate variability) from 174 
the long-term yield trends (affected by climate change).  175 
 176 
2.2. Yield impacts by ENSO phase 177 
2.2.1. ENSO index for CMIP6 GCMs 178 

Using the CMIP6 multi-GCM ensemble climate dataset (Eyring et al. 2016), we 179 
calculated monthly mean sea surface temperature (SST) over the Nino3.4 region (5°S to 180 
5°N and 170°W to 120°W) and their anomalies, relative the average of 1900–1999. As 181 
expected, the Nino3.4 monthly SST anomaly series showed an increasing trend in 182 
response to the projected warming. We therefore detrended them by using the locally 183 
weighted scatterplot smoothing (LOWESS) that is available in R (Cleveland et al. 1979) 184 
and distinguished the natural variability of monthly SST anomalies from the long-term 185 
trend (Fig. S2). The detrended Nino3.4 monthly SST anomaly series was calculated for 186 
each combination of the GCMs and warming levels and used as the ENSO index. This 187 
detrending procedure basically follows the method of Cai et al. (2022). However, we used 188 
LOWESS instead of the quadratic regression that is used in Cai et al. (2022) to allow 189 
detrending in a more non-parametric way.  190 
 191 
2.2.2. Linking ENSO in the climate-crop model ensemble 192 

We associated annual yield anomaly from long-term yield trend with ENSO phase 193 
following the method of Iizumi et al. (2014). The ENSO phases consist of three states: 194 
warm (El Niño), neutral and cool (La Niña). In addition, we made a distinction between 195 
strong and weak events for the warm phase based on the average of the detrended Nino3.4 196 
monthly SST anomaly over three months before the harvest of a crop (ΔSST): a relatively 197 
strong El Niño (ΔSST>+1.0 °C) and a relatively weak El Niño (+0.5<ΔSST≤+1.0 °C). 198 
Similar to the warm phase, a distinction was made between a relatively strong La Niña 199 
(ΔSST<–1.0 °C) and a relatively weak La Niña (–1.0<ΔSST≤–0.5 °C). The remaining 200 
state was classified into a neutral phase (–0.5<ΔSST<+0.5 °C). Since weak El Niño and 201 
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La Niña events were few in the climate-crop model ensemble, as reported in Singh et al. 202 
2022, the present study focused strong El Niño and La Niña events. 203 
  The harvest months for the crops considered here were obtained from the latest global 204 
crop calendars (Jägermeyr et al. 2021). Although the projected warming would accelerate 205 
crop growth, we used the fixed calendars throughout the study period as the multi-GGCM 206 
ensemble mean harvest months were not currently available. However, the observed 207 
advances in harvesting for the recent two decades are <2 weeks and the estimated change 208 
is <5 days per 1 °C warming (Hosokawa et al. 2023). As we associated the ENSO phase 209 
determined based on a 3-month average SST anomaly with yield anomaly, the assumption 210 
of time-constant crop calendars may not largely affect the results of this study.  211 
 212 
2.2.3. Significance of the ENSO impacts  213 

We respectively examined the statistical significance of yield impacts from the strong 214 
El Niño and strong La Niña years under the projected warming. To that end, the percent 215 
yield changes in the strong El Niño (La Niña) years were compared with those in the 216 
neutral years, with both samples consisting of the GCMs and years. We selected to 217 
combine the two GCMs (MPI-ESM1-2-HR and MRI-ESM2-0) to increase the sample 218 
size. The null hypothesis tested here using Welch’s t-test (Welch 1947) was that the 219 
means of two populations are equal (i.e., the percent yield anomalies in the strong El Niño 220 
(La Niña) years and those in the neutral years have the same mean). This test can be 221 
applied to the case of different variance between two populations.  222 

The significance testing was done for each crop, location and period. The historical 223 
period (1982–2020; 39 years) was relatively longer than the future period (2035–2064 224 
and 2065–2094, each 30 years). This was because to compare with the historical ENSO 225 
impacts over as long a period as possible, and to have two non-overlapping time windows 226 
in the future period. The average sample size across the crops and warming levels, 227 
consisting of the GCMs and years, was {strong El Niño, Neutral, strong La Niña}={7.9, 228 
50.2, 7.9} years in the historical period and {7.3, 45.6, 7.1} and {6.2, 49.1, 4.7} years for 229 
the middle and end of this century, respectively.  230 
 231 
2.3. Climate-crop model ensemble performance  232 
2.3.1. Actual ENSO-induced yield impacts  233 

For validation purposes, we compared the ENSO impacts estimated using the climate-234 
crop model ensemble in the historical period with the actual ones. The actual ENSO 235 
impacts were derived based on the GDHY grid yield dataset (Iizumi 2019, Iizumi & Sakai 236 
2000), the reported crop calendars (Sacks et al. 2010) and the COBE2 (Centennial in Situ 237 
Observation-Based Estimates of the Variability of SST and Marine Meteorological 238 
Variables version 2) monthly SST dataset (Hirahara et al. 2014).  239 

For consistent comparisons, annual yield data for the period 1981–2020 were detrended 240 
using the 5-year running averaging method. Then percent yield anomalies were calculated, 241 
relative to the average yields of 2009–2011, to have the 2010 baseline. In the GDHY 242 
dataset, yield data were available for two seasons for maize, rice and wheat (major and 243 
secondary seasons for maize and rice and winter and spring seasons for wheat), while 244 
only major season was available for soybean. We calculated average Nino3.4 SST 245 
anomaly over the three months before the harvest for each season of a crop when multiple 246 
seasons were operated. The calculated SST anomalies were further averaged across the 247 
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seasons, when necessary. Annual yield anomalies were associated with the ENSO phase 248 
using the ENSO index calculated from the COBE2 SST dataset in the same manner as 249 
described for the climate-crop model ensemble.  250 
 251 
2.3.2. Similarity in geographic patterns 252 

To assess the reliability of the climate-crop model ensemble, we compared the spatial 253 
distributions of yield anomalies derived from the climate-crop model ensemble—based 254 
on the SSP126 scenario for the historical period with those actual data during El Niño and 255 
La Niña events. We used p-values, spatial correlations, and Cohen's kappa coefficients as 256 
metrics for this evaluation. As outlined in Section 2.2.3, p-values from Welch’s t-test were 257 
used to gauge the significance of yield deviations during ENSO events relative to neutral 258 
years, with lower p-values indicating a more pronounced signal of ENSO impact. Spatial 259 
correlations were computed to assess the spatial agreement between the climate-crop 260 
model ensemble and actual data, while Cohen's kappa coefficients measured agreement 261 
in terms of the geographic patterns of categorical ENSO impacts (the significant 262 
positive/negative yield anomalies in each significance level). 263 
 264 
3. RESULTS 265 
 266 
3.1.Model ensemble performance 267 

The performance reported here refers to how well the climate–crop model ensemble 268 
reproduces the actual (observed) yield anomalies under El Niño or La Niña conditions. 269 
Figure 1 illustrates how we assess the performance at different p-value thresholds, which 270 
were used to identify grid cells with a statistically significant difference (El Niño or La 271 
Niña vs. neutral). Specifically, for each threshold, we assess the spatial agreement with 272 
the observed yield anomalies in terms of spatial correlation and Cohen’s kappa. 273 

For illustrative purposes, we focus on El Niño impacts in the text below, but note the 274 
figure also covers La Niña impacts. As shown in the top left panel of Fig. 1, the number 275 
of grid cells identified with significant El Niño impacts decreases as the p-value threshold 276 
becomes more stringent (smaller). The skill score values (the spatial correlation and the 277 
kappa coefficient) gradually increase as the p-value becomes smaller, then drop for some 278 
crops if too few grid cells remain. This pattern suggests that the ensemble’s performance 279 
is higher in regions with stronger, more consistent El Niño impacts. Maize shows this 280 
trend more clearly than other crops. 281 

When the p-value was set as 0.1, consistent with the previous literature (Iizumi et al. 282 
2014, Heino et al. 2020), the spatial correlation coefficients between the simulated and 283 
observed yield impacts for El Niño events were 0.63 for maize, –0.00 for rice, and –0.03 284 
for wheat, while for La Niña events they were 0.29 for maize, 0.28 for rice, and 0.71 for 285 
wheat (see Table S2). The corresponding kappa values were 0.50, 0.01, and 0.17 for 286 
maize, rice, and wheat, respectively, during El Niño events, and 0.46, 0.25, and 0.59 287 
during La Niña events. Notably, soybean showed negative correlations and kappa values 288 
for both ENSO phases, suggesting that the simulated yield deviations for soybean do not 289 
align well with the actual patterns. Overall, the model's performance also varies by ENSO 290 
phase: for example, the ensemble better captures La Niña impacts on wheat than El Niño 291 
impacts, whereas for maize and rice the differences between phases are less pronounced, 292 
with maize generally performing better than rice. 293 
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 294 
Fig. 1. Changes in the performance of climate-crop model ensemble with different p-295 
value thresholds. The upper panels illustrate the number of grid cells with significant yield 296 
impact for a given significance level (i.e., p-value) for El Niño (left) and La Niña (right) 297 
phases during the historical period (1982–2020). The middle panels depict the 298 
relationship between the Pearson’s spatial correlation coefficient and p-value thresholds 299 
for grid-cell yield impact. The bottom panels show the relationship between the kappa 300 
coefficient and p-value thresholds for grid-cell yield impact. These skill score values are 301 
shown only when 100 or more grid cells with significant yield impact are available. 302 
 303 
3.2. Projected ENSO impacts on global yields 304 

Concerning the reproductive performance of the climate-crop model ensemble 305 
described above, we limit our analysis of projected yield impact due to ENSO to the La 306 
Niña impacts on wheat and El Niño and La Niña impacts on maize (the results for wheat 307 
in the El Niño years and the El Niño and La Niña impacts for rice and soybean are 308 
available in Figs. S3–S7 for interested readers). Although the robust detection of projected 309 
ENSO impacts on yields is still challenging, some noticeable geographic patterns were 310 
found.  311 

In the historical period, North America experienced a significant decrease in wheat 312 
yield in the La Niña years (Fig. 2). However, the negative impacts of La Niña in that 313 
region would be mitigated in the future regardless of the warming levels. Eastern 314 
Australia would experience the positive yield impacts from La Niña in the future, as did 315 
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so in the historical period. In the other regions of the world, the projected La Niña impacts 316 
on wheat yield varied by the time periods and warming levels, making it difficult to depict 317 
concrete future trends. 318 
  For maize, North America showed a positive yield deviation when El Niño occurred in 319 
the climate-crop model ensemble, which was not well supported by the actual data (Fig. 320 
3). The positive maize yield impact of El Niño in the region was projected to be weakened 321 
in the future. In Eastern Brazil, the negative maize yield deviation in the historical period 322 
would continue in the future, although it was projected to be mitigated in the end of this 323 
century under the high warming scenario. The projected results showed that the negative 324 
maize yield impacts of El Niño in South Africa may reverse in the future. 325 

Historical data indicate that maize yield deviations during the La Niña phase are 326 
approximately opposite to those observed during the El Niño phase (Fig. 4). In North 327 
America, the negative yield deviation is projected to weaken by the end of this century. 328 
Additionally, eastern Brazil is expected to exhibit a larger area of positive yield deviation 329 
in the future. 330 
 331 

 332 
Fig. 2. The average percentage yield anomaly of wheat in La Niña years, relative to 333 
neutral years, for the historical (1983–2020) and future (2035–2064 and 2065–20940 334 
periods. Two emission scenarios (SSP126 and SSP585) are considered for the future 335 
periods. The actual data are also shown for historical period. The red (green) shading 336 
indicates an increase (decrease) in average yield in La Niña years. For the historical period, 337 
only the result for the SSP126 scenario is shown to avoid redundancy. 338 
 339 
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 340 
Fig. 3. Same as Fig. 2 but for maize in the El Niño years. 341 
 342 

 343 
Fig. 4. Same as Fig. 2 but for maize in the La Niña years. 344 
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 345 
4. DISCUSSION 346 
 347 

This study reveals that the current skill of the climate-crop model ensemble in 348 
reproducing the historical impacts of ENSO on global yields is limited. The ensemble 349 
performance varied considerably across crops and between ENSO phases. Interestingly, 350 
the historical ENSO impacts on average yield anomalies presented in this study shows a 351 
good agreement with that reported in Heino et al. (2019). However, discrepancies are 352 
seen in more regions when comparing the GGCM results reported in Heino et al. (2019) 353 
with the actual data. For instance, both agree on a strong decrease in yield in North 354 
America in the La Niña years, but in the El Niño years, the GGCM results reported in 355 
Heino et al. (2019) simulated an increase in yield, which is not supported by the actual 356 
data. However, note that the actual data derived based on GDHY dataset is suffer from 357 
missing information in many parts of the world (Table S3). This finding highlights the 358 
need for further improvement in both the climate-crop model ensemble and the grid yield 359 
dataset. 360 
  The results indicate that yield impacts associated with ENSO may not be fully 361 
represented by GGCMs. Our finding is in line with the result of Schewe et al. (2019) that 362 
the simulated damages due to extreme climate events are underestimated by current 363 
generation of GGCMs. This underestimation partly arises from an inadequate 364 
representation of processes in GGCMs, for instance, the availability of water for irrigation 365 
is limited when droughts occur (Schewe et al. 2019). This limitation of current GGCMs 366 
needs to be overcome to provide more reliable future projections on climate risks in food 367 
production. 368 
  In addition, GCMs have their own challenges. Recent studies have underscored 369 
profound uncertainties in ENSO predictions themselves. Hayashi et al, (2020) found that 370 
many GCMs underestimate subsurface nonlinear dynamical heating, a deficiency that 371 
leads to an underestimation of ENSO asymmetry and biases in simulating SST anomalies 372 
in the eastern equatorial Pacific. Similarly, Bayr & Latif (2022) demonstrated that the 373 
underestimation of key atmospheric feedback can induce compensating errors that distort 374 
the simulation of ENSO dynamics, including its asymmetry and phase locking to the 375 
seasonal cycle. Cai et al, (2021) reported that changes in the mean state of the equatorial 376 
Pacific, which are critical for modulating ENSO responses under greenhouse warming, 377 
are inconsistently represented across GCMs. Together, these deficiencies contribute to a 378 
large inter-GCM spread in projected ENSO behavior, ultimately affecting the reliability 379 
of ENSO impacts on yields in climate-crop model ensemble.   380 
  Despite the limitations, the climate-crop model ensemble provides some insights into 381 
the ENSO impacts on crop yields in the future. At least, it is likely that ENSO causes 382 
yield variations, both positively and negatively, for some crops and regions. However, 383 
disentangling the ENSO impact on global yields across different future time periods and 384 
warming levels proved challenging (Table S4). Future research should aim to clearly 385 
delineate how ENSO-induced oceanic variations trigger atmospheric changes, which in 386 
turn alter agro-environmental conditions and affect plant growth. This improved 387 
understanding of the entire process chain will enable more accurate projections of ENSO 388 
impacts on crop yields.  389 
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This study has several limitations. First, geographic distributions of harvested areas 390 
may shift in the future due to changing cultivation zones influenced by climate change 391 
and land-use dynamics driven by food demand and environmental policies, potentially 392 
altering the geographic patterns of ENSO impacts on yields. Second, uncertainties 393 
inherent in future climate projections and the current limitations of climate-crop models 394 
in capturing ENSO-induced yield variability highlight the need for further model 395 
improvement. Furthermore, the use of improved crop cultivars—more tolerant to 396 
suboptimal conditions such as heat, drought, and excessive soil moisture—could modify 397 
yield responses to ENSO, yet a fixed technological level was assumed in the current 398 
ensemble. 399 
 400 
5. CONCLUSIONS 401 
 402 

This study investigated the impacts of ENSO on global yields of major crops under 403 
projected future climate conditions using the recent climate-crop model ensemble. The 404 
reproductive performance of the model ensemble for the historical ENSO impacts 405 
considerably varied by crop and ENSO phase, with relatively good performance in wheat 406 
in La Niña years and maize in El Niño and La Niña years. Currently, the model 407 
performance is found to be poor for rice and soybean. These findings suggest that 408 
detecting the ENSO impacts on crop yields is challenging due to the complexities 409 
associated with the asymmetric performance between El Niño and La Niña events and 410 
the resulting teleconnections, as well as the different geographic distributions of harvested 411 
area, and different growing season between the crops. However, it is likely that the ENSO 412 
continues to be a noticeable driver of interannual yield deviation even in a warmer world. 413 
A better understanding of the complex interactions between ocean, atmosphere and crops 414 
is needed to improve our capacity to project future climate risks to food production, and 415 
ultimately to help societies better prepare for them.  416 
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Table S1. List of the GCMs, modeling groups and equilibrium climate sensitivity (ECS) 559 
obtained from the CMIP6 multi model ensemble dataset (Eyring et al. 2016) for this study. 560 
The ECS values are taken from Scafetta (2022). 561 

Model name Modeling group ECS (°C) 
GFDL-ESM4 National Oceanic and Atmospheric 

Administration, Geophysical Fluid Dynamics 
Laboratory, USA 

3.90  

IPSL-CM6A-LR Institut Pierre Simon Laplace, France 4.56  
MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 2.98 
MRI-ESM2-0 Meteorological Research Institute, Japan 3.15 
UKESM1-0-LL Met Office Hadley Centre, UK 5.34  

 562 
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Table S2. A summary of the performance statistics calculated between the climate-crop 563 

model ensemble and actual data in the historical period (1983–2020). The statistics 564 

include the total number of grid cells where both simulated and observed data are 565 

available for comparison (Ngrids), the Pearson correlation coefficient calculated between 566 

the simulated and actual data across all grid cells regardless of the significance of yield 567 

impact (Corr), the Cohen's Kappa coefficient, which measures the agreement between 568 

simulated and actual data categorized as either positive or negative yield impact 569 

regardless of the significance of yield impact (Kappa). The number of grid cells, 570 

correlation coefficient, and Kappa coefficient are also calculated using the grid cells with 571 

significant yield impact at the significance level of 10% (i.e., the p-value <= 0.1) are also 572 

shown (Corr_lowP, Kappa_lowP, and N_grids_lowP). 573 
574 

Crop Phase Corr Pvalue Kappa Ngrids Corr_lowP Pvalue_lowP Kappa_lowP Ngrids_lowP 

wheat El 
Niño 

0.061 0.0 0.023 6538 -0.033 0.716 0.172 122 

wheat La 
Niña 

0.143 0.0 0.036 4753 0.714 0.0 0.591 110 

rice El 
Niño 

0.054 0.0 0.045 5796 -0.001 0.992 0.009 181 

rice La 
Niña 

0.073 0.0 -0.013 3207 0.279 0.0 0.251 160 

maize El 
Niño 

0.199 0.0 -0.029 6544 0.625 0.0 0.502 205 

maize La 
Niña 

0.126 0.0 0.102 4182 0.287 0.026 0.457 60 

soybean El 
Niño 

-0.353 0.0 -0.191 2905 -0.78 0.0 -0.413 22 

soybean La 
Niña 

-0.218 0.0 -0.233 2078 -0.39 0.001 -0.126 67 
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Table S3. The number of grid cells where the different sources of yield impact estimates 575 

are available in the historical period (1983–2020). The category "Both" indicates both the 576 

actual and climate-crop model ensemble data are available, while "Only" indicates that 577 

either the actual or the model ensemble data is available. The values in the parenthesis 578 

indicate the percentages relative to the total number of grid cells with the model ensemble 579 

data.580 

Crop Phase ssp126 Actual Both ssp126_Only Actual_Only 

wheat El Niño 20901 11552 (55%) 11303 (54%) 9598 (46%) 249  

wheat La Niña 20901 7798 (37%) 7590 (36%) 13311 (64%) 208  

rice El Niño 10862 8491 (78%) 7133 (66%) 3729 (34%) 1358 

rice La Niña 10862 8480 (78%) 7103 (65%) 3759 (35%) 1377 

maize El Niño 15318 10281 (67%) 7483 (49%) 7835 (51%) 2798 

maize La Niña 15318 9623 (63%) 6932 (45%) 8386 (55%) 2691 

soybean El Niño 10193 4472 (44%) 4036 (40%) 6157 (60%) 436  

soybean La Niña 10193 3499 (34%) 3137 (31%) 7056 (69%) 362  
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Table S4. Global area-weighted average yield anomalies. In this table, 581 
“Avg_AreaYield_E,” “Avg_AreaYield_N,” and “Avg_AreaYield_L” represent the 582 
average percentage yield anomalies for El Niño, Neutral, and La Niña conditions, 583 
respectively. These averages are derived by weighting grid-level yield anomalies by the 584 
harvested area. 585 
Crop Period Scenario Avg_AreaYield_E 

(%) 
Avg_AreaYield_N 
(%) 

Avg_AreaYield_L 
(%) 

wheat 1983_2020 actual -2.49 -0.11 -4.26 

wheat 1983_2020 ssp126 0.96 -0.09 -2.00 

wheat 2035_2064 ssp126 -0.34 -0.09 -0.34 

wheat 2035_2064 ssp585 -0.82 0.23 -0.15 

wheat 2065_2094 ssp126 0.39 0.00 0.92 

wheat 2065_2094 ssp585 -0.73 0.12 0.95 

soybean 1983_2020 Actual 1.11 -0.72 -0.11 

soybean 1983_2020 ssp126 1.50 0.05 -1.15 

soybean 2035_2064 ssp126 0.20 -0.13 -0.22 

soybean 2035_2064 ssp585 1.12 0.13 0.53 

soybean 2065_2094 ssp126 1.05 -0.01 1.33 

soybean 2065_2094 ssp585 1.46 -0.62 0.96 

rice 1983_2020 Actual -1.61 0.24 -1.19 

rice 1983_2020 ssp126 -1.61 0.09 1.62 

rice 2035_2064 ssp126 -1.39 0.09 2.09 

rice 2035_2064 ssp585 -1.99 0.14 0.55 

rice 2065_2094 ssp126 -1.85 -0.05 1.22 

rice 2065_2094 ssp585 -1.24 -0.02 1.52 

maize 1983_2020 Actual -3.06 0.09 -0.09 

maize 1983_2020 ssp126 -1.04 0.19 0.75 

maize 2035_2064 ssp126 -1.34 0.16 0.71 

maize 2035_2064 ssp585 -1.59 0.13 0.48 

maize 2065_2094 ssp126 -1.77 -0.06 0.95 

maize 2065_2094 ssp585 -0.60 -0.13 0.93 

586 
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 587 

Fig. S1. Detrending of annual yield time series. The original yield time series (top), trend 588 
component represented by 5-year running average (middle) and interannual variability 589 
component or yield anomalies (bottom). The data shown here is artificially generated for 590 
explanation purposes.  591 
 592 
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 593 
Fig. S2. An example of Nino3.4 monthly SST anomaly series derived from a GCM.  594 



23 
 

 595 

Fig. S3. Same as Fig. 2 but for wheat in the El Niño years. 596 

 597 
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 598 
Fig. S4. Same as Fig. 2 but for rice in the El Niño years. 599 
 600 
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 601 
Fig. S5. Same as Fig. 2 but for rice in the La Niña years. 602 
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 603 
Fig. S6. Same as Fig. 2 but for soybean in the El Niño years. 604 
 605 
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 606 
Fig. S7. Same as Fig. 2 but for soybean in the La Niña year.  607 


