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Abstract

Since cluster analysis methods usually cannot be applied directly to data with
missing values, various approaches have been investigated to handle the problem.
Multiple imputation is one of the standard procedures for addressing the problem of
missing data. In cluster analysis, instead of Rubin’s rule, cluster ensemble methods
have been proposed to be combined with multiple imputation. However, it remains
unrevealed which of the cluster ensemble algorithms leads to better performance
when integrated with the procedure. Therefore, we conducted numerical compar-
isons of several algorithms to integrate the results from k-means++ clustering for
multiply imputed datasets. Our results suggest that the non-negative matrix fac-
torization algorithm may be suitable for scenarios with class balance, whereas the
agglomerative cluster algorithm may be suitable for scenarios with class imbalance.
Before application to actual datasets, we still recommend performing simulation
experiments in scenarios reflecting the characteristics of the datasets and the as-
sumption of missing value mechanisms.

Keywords: Cluster analysis, Consensus clustering, Hierarchical clustering, k-means,
Non-negative matrix factorization

1 Introduction

Cluster analysis is the task of partitioning a series of observations into several clusters
(groups) in a way that the observations in the same cluster tend to be similar. Cluster
analysis has been applied in various fields, from medicine to social sciences. Numerous
methods have been developed to perform cluster analysis, such as k-means and hierarchical
clustering (Forgey, 1965; Ward Jr, 1963). However, most basic clustering methods cannot
be directly applied to real-world datasets because they often include missing values.
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Complete case analysis is the approach in which any observations with missing values
are merely deleted from the analysis. Although this approach is one of the simplest ways
to deal with missing values, it can influence the validity of results and impede subsequent
analyses based on the assigned clusters to each observation. For example, if only a limited
number of observations remain after the deletion of observations with missing values, the
statistical power declines and the association between the assigned clusters and follow-up
data might not be detectable. Therefore, we focus on the approaches that include all
of the observations, even those with missing values. Multiple imputation is one of such
methods (Rubin, 1976, 1987; Schafer, 1997). This approach consists of two main steps:
first, multiple complete datasets by imputing the missing values using probabilistic models
and second, the results from each complete dataset into the final result using Rubin’s rule.

While multiple imputation has been used for regression analysis with incomplete data,
the approach has recently been extended to cluster analysis. For cluster analysis, instead
of Rubin’s rule, cluster ensemble algorithms have been proposed to combine the results
(Strehl and Ghosh, 2002; Ghaemi et al., 2009). Basagaña et al. (2013) employed a relabel-
ing and voting algorithm to combine results from multiple complete datasets. Faucheux
et al. (2021) used the MultiCons algorithm based on frequent item set mining (Al-Najdi
et al., 2016). Bruckers et al. (2017) and Audigier and Niang (2023) focused on the formu-
lation of a clustering ensemble algorithm as the solution to the mean partition problem.
They applied a direct optimization approach of the target function and the non-negative
matrix factorization ensemble algorithm (Li et al., 2007). Other proposed methods to
combine multiple imputation results are the incorporation of distance matrices and the
integration of cluster centroids (Lee and Harel, 2023; Aschenbruck et al., 2023).

Although various clustering ensemble methods and several comparison results have
been presented, it remains unrevealed which algorithm is effective for integrating with mul-
tiple imputation to handle missing data (Kuncheva et al., 2006; Li et al., 2009). Therefore,
the purpose of this study is to compare numerically the performance of several ensemble
algorithms. We especially focus on the algorithms to offer approximate or locally optimal
solutions to the problem formulated by the mean partition problem.

The remainder of this paper is organized as follows. In Section 2, we formulate the
cluster ensemble methods and introduce several algorithms. In Section 3, we detail the
settings of our numerical comparison. In Section 4, we show the results of the experiments.
In Section 5, we discuss the implications and limitations. Finally, In Section 6, we conclude
the study.

2 Methods

2.1 Cluster Ensemble Methods

Cluster ensemble methods integrate multiple results from various cluster analysis al-
gorithms or techniques into a single result. These approaches have been developed to
improve clustering quality, providing stability of results (Vega-Pons and Ruiz-Shulcloper,
2011). We first formulate the cluster ensemble method based on the mean partition
problem. Let X := {xu|1 ≤ u ≤ n, xu ∈ Rp} be data points to be clustered. Suppose
k clusters are assigned to X , and the possible set of partitions is denoted by Ωn

k . We
assume that m clustering results {Ci|1 ≤ i ≤ m, Ci ∈ Ωn

k} are given. Let d(Ci, Cj) ∈ R+
0

denote the dissimilarity of two clustering results. We define D(C) := 1
m

∑m
i d(Ci, C) as
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the target function. Then, the optimization problem

Ĉ := argmin
C∈Ωn

k

D(C) (1)

is defined as the mean partition problem and we adopt the minimizer Ĉ as the integrated
result (Topchy et al., 2004).

Because d(·, ·) is desirable for having the property of distance metric, we use the
Mirkin distance and normalized mutual information (NMI) distance (Vinh et al., 2010).
We define L(Ci, u) as the cluster assigned to xu in Ci. Then, the Mirkin distance is defined
as

d(Ci, Cj) :=
n∑

u=1

n∑
v=1

duv (Ci, Cj) ,

where

duv (Ci, Cj) :=


1 if L(Ci, u) = L(Ci, v) and L(Cj, u) ̸= L(Cj, v),
1 if L(Cj, u) = L(Cj, v) and L(Ci, u) ̸= L(Ci, v),
0 otherwise.

(2)

The NMI distance is based on the quantity of mutual information normalized using the
entropy. The distance is defined as

d(Ci, Cj) := 1− NMI(Ci, Cj),

where

NMI(Ci, Cj) =
∑
s∈Ci

∑
t∈Cj

P (s, t) log

(
P (s, t)

P (s)P (t)

)
/max{H(Ci), H(Cj)}.

We note thatH(C) := −
∑

s∈C P (s) logP (s) is the entropy, where P (s, t) is the proportion
of data points simultaneously assigned to cluster s and t, and P (s) and P (t) are the
proportions of data points assigned to cluster s and t, respectively. Since the optimization
problem (1) using these dissimilarities is known as NP-complete, several algorithms have
been developed to offer approximate or locally optimal solutions to this problem.

2.2 Greedy Algorithm to Directly Optimize D(C)

Greedy algorithms are approaches that obtain local solutions via repeated optimization
of partial problems. In this study, we focus on the algorithm by Strehl and Ghosh (2002),
which directly optimizes D(C). The procedures of this algorithm are as follows: (i)
Provide the data points with the initial labels. (ii) Evaluate D(C) repeatedly relabeling
the data point xi with labels different from the initial one. (iii) Replace the label of xi

such that it gives the minimal target function. (iv) Apply Steps ii and iii repeatedly until
the label change does not occur. This algorithm is independent of the definition of d(·, ·),
so it is applicable to both the Mirkin and NMI distance.
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2.3 Non-negative Matrix Factorization

When using the Mirkin distance, the optimization problem of D(C) is known to be at-
tributed to the non-negative matrix factorization (NMF). That is, we obtain the following
transformation:

D(C) =
1

m

m∑
i=1

n∑
u=1

n∑
v=1

[Muv (Ci)−Muv (C)]2

= ∆M2 +
n∑

u=1

n∑
v=1

(
M̃uv − Uuv

)2

, (3)

where

Muv (Ci) :=

{
1 if L (Ci, u) = L (Ci, v)
0 otherwise

,

Mi := (Mu,v(Ci))1≤u≤n,1≤v≤n, M̃uv := 1
m

∑m
i=1Muv (Ci) , Uuv := Muv(C) , and ∆M2 :=

1
m

∑
i

∑
u,v[Muv (Ci) − M̃uv]. From the representation in (3), the optimization problem

minC∈Ωn
k
D(C) can be reduced to the optimization problem minU ∥M̃ − U∥2F under a

certain constraint on U, where M̃ := 1
m

∑m
i=1Mi. It is known that the obtained matrix

H from the symmetric NMF problem

min
H∈Rn×k,D∈Rk×kH≥0,D≥0

∥∥∥M̃−HDH⊤
∥∥∥2

F
, s.t. H⊤H = I (4)

can be regarded as a cluster indicator matrix of the integrated results (Li et al., 2007; Ding
et al., 2006). An iterative algorithm to solve the optimization problem (4) was proposed
by Li et al. (2007).

2.4 Agglomerative Clustering

When using the Mirkin distance, the optimization problem of D(C) is also known to
be reduced to correlation clustering. That is, we obtain the following representation of
D(C):

D(C) =
n∑

u=1

n∑
v=1

I (L(C, u) = L(C, v)) M̃uv +
n∑

u=1

n∑
v=1

I (L(C, u) ̸= L(C, v)) (1− M̃uv),

where I(·) is the indicator function. The agglomerative clustering method using M̃ as the
input dissimilarity matrix provides an approximate solution to the correlation clustering
(Gionis et al., 2007).

2.5 Combined Approach with Multiple Imputation

The integrated estimate after multiple imputation is obtained by Rubin’s rule in the
case of regression analysis. For cluster analysis, the results can be combined via cluster
ensemble approaches. Assume that we have m results

{
CM

1 , CM
2 , . . . , CM

m

}
for m imputed

datasets. ĈM , defined as below can be obtained as the final result:

ĈM := argmin
C∈Ωn

k

1

m

m∑
i

d(CM
i , C).
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The amount of uncertainty of the final result can be quantified via the integrated version
of clustering instability defined in Audigier and Niang (2023), which is not considered in
this study.

3 Numerical Experiments

3.1 Experiment 1: Comparison of Cluster Ensemble Algorithms
Alone

We performed the comparison of the cluster ensemble algorithms alone to obtain some
insight into the differences in performance of the algorithms introduced in the prior section.
We designed the scenarios in terms of varying the sample size and class balance. While
the data generation settings were based on the experiments by Audigier and Niang (2023),
our settings were extended from 2 to 3 classes.

The data generation model in our experiments was the multivariate normal distribu-
tion with dimension p = 10 and three mixture components:

x ∼ π1Np (µ1,Σ) + π2Np (µ2,Σ) + π3Np (µ3,Σ) , Σ = σ2Ip,

where Ip denotes the p−dimensional identity matrix. The cluster centers were the mean
vectors of each component set to µ1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), µ2 = (0, 0, 0, 0, 0, 2, 2, 2, 2, 2),
and µ3 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2). The standard deviations of the components were set to
σ ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}. The sample sizes of data points were n ∈ {30, 60, 120}.
The mixture ratios were (π1, π2, π3) ∈ {(1/3, 1/3, 1/3), (1/6, 1/3, 1/2)}, representing the
balanced and imbalanced scenarios, respectively.

We compared three algorithms: the greedy algorithm for directly optimizing the NMI
distance-based D(C) (GNMI), non-negative matrix factorization (NMF), and agglomer-
ative clustering (AClu) based on the Ward method.

The performance was evaluated in terms of recovering the true labels, which were
determined according to which cluster center the data point was generated from. The
evaluation metric was the Adjusted Rand Index (ARI), which is a measure of the degree
of accordance between two cluster labels (Hubert and Arabie, 1985). The measure ranges
from −1 to 1, and the values close to 1 indicate that the labels are similar. A detailed
explanation of ARI is provided in Appendix A.

The evaluation process was as follows: (i) We obtained 30 results to be integrated by
applying k-means++ to the 30 generated datasets. (ii) We integrated the 30 results into
the final results via cluster ensemble algorithms and evaluate them. (iii) The procedures
above were repeated 200 times. k-means++ is an improved version of the k-means algo-
rithm to address sensitivity to initial cluster centers (Arthur and Vassilvitskii, 2007). The
details of k-means++ are explained in Appendix B.

Additionally, to obtain a deeper insight, we introduced the instability measure of the
clustering results to be integrated. The instability is defined as:

Instability :=
100∑
i<j

d(Ci, Cj),

where d(Ci, Cj) is the NMI distance.
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3.2 Experiment 2: Evaluations of the Combined Approaches
with Multiple Imputation

We conducted numerical experiments to compare the cluster ensemble methods com-
bined with multiple imputation for addressing missing data. We also compared the k-pod
algorithm, which optimizes the objective function defined over only observed values and
has been one of the commonly used methods for clustering with missing data (Chi et al.,
2016). The details of k-pod are provided in Appendix B.

We designed the scenarios with additional considerations of missing ratios and missing
data mechanisms. The data generation model was the same as that in Experiment 1 except
for the covariance matrix Σ, which is defined as

Σ =

(
I5 0
0 R

)
,

where R is a 5 × 5 matrix with its diagonal elements 1 and the other elements ρ. The
correlation parameter ρ was set to ρ ∈ {0.3, 0.6}.

In addition, the missing values were brought to the generated data under the as-
sumption of the missing completely at random (MCAR) or missing at random (MAR)
mechanism. The MCAR is the mechanism in which the missingness is independent of
both observed and unobserved values. The MAR is the mechanism in which the miss-
ingness depends only on the observed values. For the MCAR mechanism, the missing
probability for each data point xu and each dimension ℓ was set as

∀u ∈ {1, . . . , n}, ∀ℓ ∈ {2, . . . , p},
Prob (missingness of the ℓ-th component of data point xu) = τ,

and for the MAR mechanism, the probability was set as

∀u ∈ {1, . . . , n}, ∀ℓ ∈ {2, . . . , p},
Prob (missingness of the ℓ-th component of data point xu) = Φ (aτ + xu1) ,

where the missing ratios were τ ∈ {0.1, 0.3, 0.5}, and the constant aτ was determined to
adjust the ratios. The cumulative distribution function (CDF) of the standard normal
distribution is denoted by Φ.

We compared the k-means++ on the complete data (k-means-full) for the benchmark
results, the k-means++ on complete cases (k-means-CCA), the k-pod algorithm (k-pod),
and each ensemble algorithm integrated with multiple imputation (MI-GNMI, MI-NMF,
MI-AClu). Multiple imputation was conducted via the chained equation (MICE) to gen-
erate the imputed datasets. The imputation models were the predictive mean matching
based on the nearest 5 points. For each imputed dataset, we applied k-means++ to obtain
results with 3 clusters, and then the results were integrated through ensemble algorithms.
The evaluation process, measure, and number of repetitions were the same as those in
Experiment 1.

3.3 Software

Our experiments were performed using Python and R. For data generation, application
of the k-means method, and implementation of each ensemble algorithm, we used Python
3.8.3, Numpy 1.23.3, scikit-learn 1.3.1, and Scipy 1.8.1(Pedregosa et al., 2011; Virtanen
et al., 2020). The implementations of MICE and k-pod were executed using R 4.2.2, mice
3.16.0, and kpodclustr 1.1(van Buuren and Groothuis-Oudshoorn, 2011; Chi et al., 2016).
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4 Results

4.1 Experiment 1: Comparison of the Cluster Ensemble Algo-
rithms Alone

The ARI values for balanced data scenarios are presented in the box plot of the left
column of Figure 1. From the results, NMF typically exhibited the highest ARI values
over all the settings in terms of sample sizes. In the settings of n = 30 and n = 60,
the ARI of GNMI and AClu was almost the same. However, in the n = 120 setting,
GNMI was superior to AClu. As σ increased, the instability of the clustering results to
be integrated also increased. It seems that in the larger instability, the differences in the
performances became more distinct.

The results for the imbalanced data scenarios are shown in the right column. While
the performance of the NMF and GNMI algorithms was not stable in relatively small
instability settings, that of AClu was stable and relatively high. NMF outperformed
other approaches except in scenarios of low instability and larger sample sizes. However,
it is noted that the NMF may often have failed to recover the appropriate cluster labels
in such scenarios. As the instability increased, the performance of NMF and GNMI
improved.

4.2 Experiment 2: Evaluations of the Combined Approaches
with Multiple Imputation

The results for balanced data and low correlation scenarios (ρ = 0.3) are shown in
Figure 2, and those of high correlation scenario (ρ = 0.6) are exhibited in Figure 3.
Because the results seem to be similar, we now focus on the low-correlation scenarios
(ρ = 0.3). In the case of the MCAR missing data scenarios, there were hardly any
differences in ARI among the cluster ensemble approaches and k-pod. However, in the
scenarios with a high missing ratio (τ = 0.5), the performance of k-pod declined. The CCA
resulted in relatively low ARI or high variance. This tendency was particularly evident
for the scenarios with higher missing ratios, where very few observations were complete
cases. In the MAR missing data scenarios, the ARI values of k-pod were notably lower
than those of the other methods. In both the MCAR and MAR scenarios, among the
cluster ensemble approaches, the NMF algorithm had slightly higher ARI, followed by
GNMI and AClu. These differences were more distinct in the settings with larger sample
sizes. The CCA did not work well as in the MCAR scenarios.

The results of the imbalanced scenarios are shown in Figure 4 and Figure 5, which are
low and high correlation scenarios, respectively. In the MCAR scenarios, the k-pod out-
performed the other methods, while GNMI and AClu exhibited slightly higher ARI values
than NMF. In the MAR scenarios, when the missing ratios were τ = 0.3 and τ = 0.6,
the superiority of the cluster ensemble algorithm was notable. Although the performance
of the three ensemble approaches was nearly identical, GNMI and AClu provided slightly
higher ARI values than NMF. The ensemble approaches especially outperformed the k-
pod in the high missing rate scenarios (τ = 0.5).
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5 Discussion

The experiments suggest that in terms of ARI between the true cluster labels, the NMF
algorithm may tend to yield better performance in the class balance scenarios. In contrast,
the AClu and GNMI approaches may perform better in scenarios with class imbalance.
These results are consistent with the results of evaluating ensemble algorithms alone,
which indicates that NMF tends to be more robust against the instability of the clustering
results to be integrated than AClu and GNMI, and AClu typically demonstrates more
stability in scenarios with class imbalance than other algorithms. Therefore, differences in
performance when integrated with multiple imputation procedures may be attributable
to the characteristics of the type of cluster ensemble algorithms.

The NMF algorithm tends to show lower performance in scenarios with large sample
sizes and low instability. This could be because the symmetric non-negative factorization
method falls into inappropriate local minima, which leads to the failure to reconstruct the
original matrix. Figure 6 shows an example of failure of the NMF algorithm to reconstruct
the original matrix in a dataset with n = 120 and class imbalanced scenarios. It seems
that the GNMI algorithm also falls into inappropriate local minima in scenarios with class
imbalance. In our simulation study, we adopted the best solution of the NMF among five
implementations for each iteration to address the issue of the selection of initial values.
Although this approach may have led to better solutions than NMF with a single initial
value, it did not completely overcome the issue.

The k-pod algorithm is commonly used for cluster analysis with incomplete data.
Since multiple imputation procedures are computationally intensive, the k-pod algorithm
may be better in terms of computational efficiency. However, our results suggest that
the performance of k-pod may decline compared to those of the multiple imputation and
ensemble approaches in high missing ratio scenarios or MAR missing scenarios. The
additional advantage of multiple imputation and ensemble approaches over k-pod is the
ability to select clustering algorithms and missing value imputation models in a way that
is suitable for the data.

In this study, we compared three ensemble algorithms. However, there are many
variations of ensemble algorithms (Strehl and Ghosh, 2002; Ghaemi et al., 2009). Among
the algorithms proposed for combination with multiple imputation, we did not adopt
the voting and relabeling algorithm and the MultiCons algorithm. The former involves
the manual process of relabeling data points so that the interpretations of the assigned
labels are the same across results. This manual process is so labour-intensive that it
is impractical to conduct it on many clustering results. The MultiCons algorithm is an
ensemble approach based on frequent pattern mining. This algorithm requires substantial
computational time. In our preliminary studies, even with smaller sample sizes, such as
n = 30 or n = 60, a single run required hours. Thus, the practicality of these algorithms
was deemed limited.

In this study, we used MICE with predictive mean matching, a popular multiple impu-
tation method in various applications. However, it is not always the best choice for cluster
analysis. DPImputeCont is a method based on the Dirichlet Process Gaussian mixture
model and it may be more suitable (Kim et al., 2014). Other imputation approaches can
be implemented using the clusterMI package in R, and further simulation experiments
on their combination with cluster ensemble methods should be conducted in the future
(Audigier et al., 2021; Audigier and Niang, 2023).

Various measures can be used to evaluate clustering results. While we focused on
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the accuracy of recovered labels through the ARI measure, other metrics such as the
silhouette coefficient, normalized mutual information, and purity assess different aspects
of clustering results (Rousseeuw, 1987). Even when these measures provide similar values,
the patterns of clusters may differ and thus, considering multiple measures in practice is
important.

When applying cluster analysis to real-world datasets, it is important to determine the
number of clusters. This remains to be explored in this study. One possible approach is
using information criteria to select the number of clusters for k-means to be integrated or
other automatic cluster number selection such as X-means (Ishioka, 2000). Then, the final
number of clusters could be determined by the most frequent number across the imputed
datasets. However, in actual studies in the applied field, the number of clusters may be
predetermined based on the prior knowledge of researchers. Therefore our investigation
is still relevant.

Finally, in actual applications, it is important to consider the missing data mechanisms
and select the appropriate methods to address them. The missing data mechanisms inves-
tigated in this study are limited, and our scenarios do not cover all possible data scenarios.
Therefore, before applying the algorithms to actual data, we recommend assessing their
performance via simulation experiments under some data generation scenarios that reflect
both the characteristics of the actual data and the assumptions of missing mechanisms.

6 Conclusion

In conclusion, our numerical comparison of cluster ensemble algorithms provided us
with some practical guides for combination with multiple imputation. Our results sug-
gest that the non-negative matrix factorization algorithm may be suitable for the scenarios
with class balance, whereas agglomerative clustering may be suitable in scenarios with
class imbalance. Although the performance of the three ensemble algorithms was nearly
identical in the scenarios with class imbalance, we should consider that the non-negative
matrix factorization and greedy algorithm may fall into inappropriate local minima and
provide low performance. Before application to actual data, we still recommend perform-
ing simulation experiments in scenarios reflecting the characteristics of the datasets and
the assumption of missing data mechanisms.
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Code and Data Availability

The Python and R scripts to generate data and perform experiments in this study are
available from https://github.com/t-yui/MI-ClusterEnsembles-Comparison.

Appendix A Adjusted Rand Index

Rand (1971) proposed the Rand Index as a measure of the correspondence between
two clustering results. When we define duv(Ci, Cj) as (2), we have

1− duv(Ci, Cj) =


1 if {L(Ci, u) = L(Ci, v) and L(Cj, u) = L(Cj, v)} ,
1 if {L(Ci, u) ̸= L(Ci, v) and L(Cj, u) ̸= L(Cj, v)} ,
0 otherwise,

which indicates the agreement of Ci and Cj on the pair {xu,xv}. The Rand index
RI(Ci, Cj) is the proportion of pairs {xu,xv} on which Ci and Cj agrees, that is,

RI(Ci, Cj) :=

∑
1≤u<v≤n {1− duv(Ci, Cj)}(

n
2

) .

The Adjusted Rand Index proposed by Hubert and Arabie (1985) is the normalized
version of the Rand Index considering the expected agreement under a random clustering
model. We define a probability space (Ωn

k ,F ,P), where F is a σ-algebra on Ωn
k , and P is a

probability measure that models a random clustering process. Then, the Adjusted Rand
Index is defined as

ARI(Ci, Cj) =
RI(Ci, Cj)− EP [RI(Ci, Cj)]

max {RI(Ci, Cj)} − EP [RI(Ci, Cj)]
.

When we define aj := |C(j)
i | and bi := |C(i)

j |, the Adjusted Rand Index can be expressed
as

ARI(Ci, Cj) =
RI(Ci, Cj)−

∑
j

(
aj
2

)∑
i

(
bi
2

)
/
(
n
2

){∑
j

(
aj
2

)
+
∑

i

(
bi
2

)}
/2−

∑
j

(
aj
2

)∑
i

(
bi
2

)
/
(
n
2

) .
Appendix B k-means and Its Related Methods

Let bj ∈ Rp denote the centroid of the j-th cluster and B = (b1, . . . ,bk)
⊤ ∈ Rk×p.

Let I(C) = {C(1), . . . , C(k)} denote the set of index set of clustering result C ∈ Ωn
k ,

where C(j) corresponds to the j-th cluster, that is, the sets in I(C) are disjoint and
∪k

j=1C
(j) = {1, . . . , n}. The k-means problem is defined as the following optimization

problem:

min
C∈Ωn

k ,B∈Rk×p

k∑
i=1

∑
j∈C(i)

∥xj − bi∥22 . (5)

The k-means algorithm finds a solution of (5) by alternately repeating the following
steps: (i) Assigning each data point to the cluster whose centroid is closest in terms of
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Euclidean distance. (ii) Updating each cluster centroid as the mean of the data points
assigned to the cluster. This algorithm requires initial centroids as input and is sensitive
to their selection.

Arthur and Vassilvitskii (2007) proposed an initialization method to address this prob-
lem. It consists of the following steps: (i) Taking the first point b1 uniformly randomly
from X . (ii) Taking the next point from X with the probability

Dist2(b)∑
x∈X Dist2(x)

,

where Dist(b) is the Euclidean distance from the nearest previously chosen point. (iii)
Repeating the second step until k points have been taken in total. This initialization
method followed by the standard k-means algorithm is called k-means++.

Let X := (x1, . . . ,xn)
⊤ ∈ Rn×p. Then, the optimization problem (5) can be rewritten

as

min
A∈H,B∈Rk×p

∥X−AB∥2F ,

where H :=
{
A|A ∈ {0, 1}n×k,A1 = 1

}
. If the (i, j)-th element of A ∈ H is 1, it

indicates i ∈ C(j). Furthermore, let Λ ⊆ {1, . . . , n} × {1, . . . , p} denote a subset of the
indices corresponding to the observed values of data points, where (i, j) ∈ Λ indicates the
j-th element of xi is observed. We then define the projection operator PΛ on Rn×p as

[PΛ(Y)]ij =

{
yij if (i, j) ∈ Λ,

0 if (i, j) ∈ Λc.

Chi et al. (2016) proposed the following optimization problem as k-means-type problem
in the presence of missing values:

min
A∈H,B∈Rk×p

∥PΛ(X)− PΛ(AB)∥2F .

They also developed a majorization-minimization algorithm to solve this problem and
named it k-pod.
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Figure 1: Adjusted rand index (ARI) of clustering ensemble algorithms and instability of
clustering results to be combined in each data setting
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Figure 2: ARI of clustering algorithms for missing data in balanced settings with ρ = 0.3
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Figure 3: ARI of clustering algorithms for missing data in balanced settings with ρ = 0.6
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Figure 4: ARI of clustering algorithms for missing data in imbalanced settings with ρ = 0.3
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Figure 5: ARI of clustering algorithms for missing data in imbalanced settings with ρ = 0.6
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Figure 6: Example of matrix restoration failure via symmetric non-negative matrix fac-
torization (NMF): Original matrix (left) and recovered matrix (right)
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