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Torque-Bounded Task-Space Admittance Control
for Redundant Manipulators

Ryo Kikuuwe

Abstract—This paper presents a task-space admittance con-
troller applicable to redundant manipulators equipped with
torque sensors. It extends Kikuuwe’s (2019) torque-bounded
admittance controller (TBAC), which allows for imposing explicit
limits on the joint actuator torques without causing unsafe
behaviors such as oscillation and overshoots. The proposed
controller enforces the end-effector to follow predefined task-
space dynamics as long as the joint torques are unsaturated and
the configuration is away from singularities. The behavior in the
nullspace, which arises from the redundant degrees of freedom
and singular configurations, is governed by predefined joint-space
dynamics. The task-space and joint-space dynamics are combined
through a newly proposed continualized pseudoinverse, which
employs the singular value decomposition. Results of experiments
using a seven-degree-of-freedom Kinova Gen3 robot illustrate
the validity of the proposed admittance controller in various
scenarios, including the case where the robot is fully stretched.

Index Terms—Admittance Control, Null-space, Redundancy,
Singular Configuration

I. INTRODUCTION

Admittance control is a control technique to regulate robots’
reactions to external forces. It is one form of impedance
control and is often referred to as position-based impedance
control. A typical implementation of admittance control is
illustrated in Fig. 1(a). The admittance controller is composed
of an internal position controller and a virtual object referred
to as a ‘proxy,’ which simulates simple dynamics such as a
spring-mass-damper system. The proxy position qx is adjusted
based on the force τs measured by a force sensor or a
torque sensor and a reference force τr given from a higher-
level controller. The proxy position qx acts as the target for
the robot’s internal position controller, which enforces the
robot’s actual position qs to track the proxy position qx. This
controller structure is suitable for robots with complicated
dynamics because its internal position controller suppresses
the influence of the hardware dynamics such as inertia and
joint friction. Its applications include haptic interfaces [1], [2],
manual guidance of industrial manipulators [3], human-robot
collaboration [4], [5], assembly [6], robotic orthoses [7], [8]
and surgical robots [9].

One concern of the admittance control structure is that it is
not straightforward to impose explicit limits on the actuator
torques. This is because the torque limits imposed on the in-
ternal position controllers can lead to a separation between the
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Fig. 1. Systems controlled with admittance controllers. (a) Typical imple-
mentation. (b) Torque-Bounded Admittance Control (TBAC) [10], on which
the proposed method is based.

proxy position qx and the actual position qs, which may result
in undesirable snapping-back and overshooting behaviors of
the robot. This property poses significant inconvenience in
ensuring the safety of admittance-controlled robots in practical
applications, especially those involving physical contact with
humans.

Another set of technical challenges arises when admittance
control should be performed in the task space, i.e., the Carte-
sian space of the end-effector position and attitude. Such con-
trollers would be needed in, e.g., human-robot collaboration
and assembly tasks. In human-robot collaboration, the robot
would need to move its end-effector in the direction in which
it is pushed or twisted by the human. In assembly tasks,
the contact force and compliance should be appropriately
regulated in the task space, irrespective of the robot configura-
tion. In this case, one needs to carefully manage the singular
configurations and the redundant degrees of freedom (DOFs).
When the robot is close to the singular configuration, the proxy
velocity in the task space may be mapped to an excessively
large joint velocity, which results in unsafe behavior of the
robot. The singular configurations have been mainly handled
by avoiding them by additional control algorithms [11], [12],
or by using approximate pseudoinverses of Jacobians [13],
[14]. Such approximations, however, would result in a certain
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level of inaccuracy in the task-space motion, as discussed
in [13], [15]. The redundancy has been treated by injecting
additional damping [16]–[20] and compliance [17], [21], [22]
in the nullspace motion1.

In a previous paper, Kikuuwe [10] proposed a controller
named a torque-bounded admittance control (TBAC), which
incorporates explicit torque limit to the internal position
controller while maintaining the consistency between the
proxy position and the actual position. It acts as a standard
admittance controller as long as the actuator torque is not
saturated, but once it is saturated, the controller yields to
external forces without inducing overshoot or oscillations.
The controller incorporates an algebraic loop, as illustrated
in Fig. 1(b), which algebraically constrains the proxy position
and the actuator torque. The entire controller is formulated
as a differential algebraic inclusion (DAI), with a discrete-
time implementation derived through the implicit (backward)
Euler discretization. This method was originally designed as
a one-dimensional controller and thus can be implemented
independently in each joint. That is, it is usable only in the
joint space.

This paper presents a task-space extension of TBAC that
tolerates singular configurations and can be used with redun-
dant manipulators. It imposes explicit torque limits to each
joint without impairing the safety, while it enforces the end-
effector to follow predefined task-space proxy dynamics as
long as the joint torques are unsaturated and the robot is
out of the singularity configurations. The dynamics of the
robot in the nullspace is determined by predetermined joint-
space proxy dynamics. The task- and joint-space dynamics
are combined as a lexicographic minimization problem, and
its computational implementation is realized with an alterna-
tive approximation of the pseudoinverse, which is named a
continualized pseudoinverse. The continualized pseudoinverse
is continuous with respect to the singular values while it is
equal to the original pseudoinverse as long as the singular
values are zero or larger than a predetermined threshold. The
controller was validated with experiments using a seven-DOF
Kinova Gen3 robot, in which the controller is shown to tolerate
singular configurations, such as those where the manipulator
is fully stretched.

One feature of the proposed controller is its incorporation
of full admittance (inertia, viscosity, and stiffness) in both the
task space and the joint space, unlike the methods in [16], [18],
[19], [20], [22]. Another feature is that it realizes the nullspace
admittance control without explicitly computing the nullspace
basis or the nullspace velocities, in contrast to the approach
in [17], [20], [23]. It may also be an important point that
the proposed controller employs concise representations of the
task-space dynamics involving rotations with a newly defined
time-derivative operator for quaternions. The operator allows
for the backward-Euler discretization of differential equations
involving quaternions and angular velocity vectors, as detailed
in Appendix A. In addition to the above features, the proposed
controller inherits the main feature of TBAC, which is the

1This paper uses the term ‘nullspace’ to mean the set of joint-space
velocities that do not affect the end-effector velocity.

safety under the actuator torque saturation.
This paper is organized as follows. Section II shows

some mathematical preliminaries. Section III provides an
overview and reinterpretation of the previously-proposed one-
dimensional TBAC [10]. Section IV proposes a new admit-
tance controller. Section V provides some theoretical analyses.
Section VI shows the results of experiments employing a
seven-DOF manipulator. Section VII provides some conclud-
ing remarks.

II. MATHEMATICAL PRELIMINARIES

A. Notations

In this paper, R denotes the set of all real numbers, and
H denotes the set of all unit quaternions. This paper treats
a quaternion as a four-dimensional vector, which means that
H ⊂ R4. We also use P = R3 × H ⊂ R7, which is used to
express the position and the attitude of the end-effector by a
7-dimensional single vector. We use the addition operator ⊕,
the subtraction operator ⊖, and the time-derivative operator ◦
for P, which are defined in Appendix A.

This paper uses the following function:

projC(x) ≜ argmin
ξ∈C

∥ξ − x∥ (1)

where C ⊂ Rn is a convex set. Here, argminx∈C f(x) denotes
the value of x ∈ C that minimizes f(x), which is single-
valued (i.e., unique) if the set C is convex. The function projC
can be said to be a projection operator onto the set C. This
paper also uses the notation coC to denote the convex hull of
a set C. With two scalars A and B, co{A,B} = co{B,A} =
[min(A,B),max(A,B)].

We also use the function sat1 : Rn × Rn → Rn and the
function sat3 : R2×R6 → R6, which are respectively defined
as follows:

sat1(F ,x) ≜

 F1x1/max(F1, |x1|)
...

Fnxn/max(Fn, |xn|)

 (2)

sat3(F ,x) ≜
[

F1x1:3/max(F1, ∥x1:3∥)
F2x4:6/max(F2, ∥x4:6∥)

]
(3)

where Fi and xi stands for the i-th elements of F and x,
respectively, and xi:j stands for the (j − i + 1)-dimensional
vector composed of the i-th to j-th elements of x. The function
sat1 is for saturating the torque values of n joints, and sat3
is for saturating the translational and rotational subvectors of
the 6-dimensional force/torque vectors.

This paper uses the ‘argument of the lexicographic mini-
mum’ operator, which should be read as follows:

arglexmin
x∈C

{f(x), g(x)} = argmin
x∈ argminx∈C f(x)

g(x). (4)

This operator provides the value of x that minimizes f(x)
at the first priority and also g(x) at the second priority. That
is, it returns the value of x that minimizes g(x) among the
values of x that minimize f(x). The operator arglexmin can
inherently be set-valued, but this paper only deals with cases
where it is single-valued.
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With a symmetric positive-semidefinite matrix A, we use
Ah to mean an arbitrary square matrix that satisfies A =
AhAhT where AhT ≜ (Ah)T . A matrix Ah can be the
principal (symmetric) square root matrix A1/2 if all elements
of A have the same physical dimensions. We use Ah to
preserve the physical consistency because A comprising el-
ements with different physical dimensions may result in A1/2

whose non-diagonal elements do not have consistent physical
dimensions. If A−1 exists, one has A−1 = A−hTA−h where
A−hT ≜ (AhT )−1 and A−h ≜ (Ah)−1. With such a matrix
Ah, the following relation holds:

∥x∥A =
√
xTAx = ∥AhTx∥, (5)

which means that a weighted vector norm can be rewritten as
an unweighted norm using AhT .

Derivations in Section III-B utilize some set-valued expres-
sions. Addition and subtraction between a set B ⊂ R and a
single value x ∈ R should be understood as

B ± x =
∪
η∈B

(η ± x). (6)

This implies that, if B = [A,B] ⊂ R, B+x = [A+x,B+x].
We use a normal-cone operator [10], which is the set-valued
function defined as follows:

N[A,B](x) =


∅ if x > B ∧ x < A
[0,∞) if x = B ̸= A
0 if A < x < B
(−∞, 0] if x = A ̸= B
(−∞,∞) if x = A = B

(7)

where A≤B. The original definition of the normal-cone
operator, which is for closed convex sets in the multidi-
mensional vector space, can be found in the literature, e.g.,
[24, Section 2.2] [25, Definition B.5] [26, Definition 2]. The
definition (7) is the special case for closed intervals in the one-
dimensional space. The following algebraic equivalence holds
between the normal cone and the projection operator:

x+N[A,B](x) ∋ y ⇐⇒ x = proj[A,B](y). (8)

A proof of (8) is provided in [24, Section A.3]. It is used for
converting a set-valued expression into an ordinary (single-
valued) expression in Section III-B.

B. Pseudoinverse and Lexicographic Minimization

Recall that, for a matrix A ∈ Rm×n, there always exists a
matrix A+ ∈ Rn×m that satisfies the following conditions:

AA+A = A, A+AA+ = A+,

(AA+)T = AA+, (A+A)T = A+A. (9)

The matrix A+ is referred to as the pseudoinverse of A.
This paper uses the following fact:

Theorem 1. With A ∈ Rm×n and b ∈ Rm, the following
statement holds true:

arglexmin
x∈Rn

{∥Ax− b∥2, ∥x∥2} = A+b. (10)

The proof is given in Appendix B. The author does not
consider it a new result, but the expression (10), in its concise
form, cannot be found in the literature as far as the author is
aware.

As an extension of Theorem 1, we have the following:

Corollary 1. The following statement holds true:

arglexmin
x∈Rn

{∥Ax− b∥2, ∥Cx− d∥2}

= C−1Ā+b+C−1(In − Ā+Ā)d (11)

where Ā ≜ AC−1 ∈ Rm×n, A ∈ Rm×n, b ∈ Rm, d ∈ Rn,
and C ∈ Rn×n is a regular matrix.

Its proof is also given in Appendix B.

III. OVERVIEW AND REINTERPRETATION OF TBAC

In a previuos paper, Kikuuwe [10] proposed a controller
referred to as a torque-bounded admittance control (TBAC).
The controller in [10] is a one-dimensional controller and
was validated only through joint-space experiments, where the
controller was implemented independently to each joint of a
robot. This section provides a quick overview of TBAC from
a somewhat different perspective.

A. Conventional Admittance Control

Here we consider a one-DOF robot with a single actuated
joint equipped with a joint position (angle) sensor and a force
(torque) sensor. Let qs ∈ R denote the measured position,
τm ∈ R denote the commanded actuator force, and τs ∈ R
be the measured external force.

A typical and conventional idea of admittance control is
that the robot should be position-controlled to follow a virtual
object, hereinafter referred to as a proxy, such as those
illustrated in Fig. 2. The proxy in Fig. 2 is an inerter-damper-
spring2 system, of which the position is qx ∈ R, connected to
a reference position qr ∈ R and subject to the measured force
τs and a reference force τr ∈ R . The motion of this proxy is
governed by the following equation of motion:

M(q̈x − αr) +B(q̇x − ur) +K(qx − qr) = τs + τr (12)

where αr ≜ u̇r and ur ≜ q̇r. Here, M > 0 is the inertia of
the inerter, B > 0 is the viscosity of the damper, and K > 0
is the stiffness of the spring. When the robot is in contact with
an environment surface, the force from the environment to the
robot is measured as the force τs, which acts on the proxy
through (12). When the robot is statically in contact with an
environment surface, τs + τr = K(qx − qr) holds true. This
means that, if the spring constant K is set to be zero, −τr can
be interpreted as the desired value of τs, and the right-hand
side of (12) can be interpreted as the error between the actual
force τs and the desired force −τr.

The proxy position qx and velocity q̇x are updated according
to (12), and the position qx is used as the command position

2An inerter is a mechanical element that produces the force proportional
to the acceleration difference between its two ends, such as those appearing
in [27].
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to the position controller, which can be typically written as
follows:

τm = Kc(qx − qs) +Bc(q̇x − q̇s) + Lc

∫
(qx − qs)dt. (13)

Here, Kc, Bc, and Lc are the proportional, derivative, and
integral gains. A typical algorithmic structure of an admittance
controller can be illustrated in Fig. 3(a). Here, T is the
sampling interval and the subscript prv indicates the value
of the associated variable in the previous timestep. Based on
the Euler discretization, we have qx = qx,prv + Tux where
ux ≜ q̇x. In the structure of Fig. 3(a), the proxy position qx
is sent to the position controller. The proxy position qx and
velocity ux are reused in the next timestep to update them to
new values.

B. Basic Version of TBAC

Let us consider the case where we need to impose the
constraint τm ∈ [ − Fc, Fc] on the actuator torque τm where
Fc > 0. The TBAC [10] is a controller to deal with such a
case, and it is described as follows:

M(q̈x − αr) +B(q̇x − ur) +K(qx − qr)

∈ τs + τr −N[−Fc,Fc](τm) (14a)

τm = Kc(qx − qs) +Bc(q̇x − q̇s) + Lc

∫
(qx − qs)dt. (14b)

This set of equations can be seen as a differential-algebraic
inclusion (DAI) with respect to qx. Because the normal-cone
term +N[−Fc,Fc](τm) in (14a) forbids τ larger than Fc, the
proxy’s acceleration q̈x is determined so that |τ | ≤ Fc is
satisfied. As long as |τ | < Fc, the controller (14) is equivalent
to the ordinary admittance controller described by (12) and
(13). The structure of TBAC (14) is shown in Fig. 1(b), in
which the term N[−Fc,Fc](τm) in (14a) appears as an algebraic
feedback loop.

The discrete-time representation of the controller (14) can
be obtained by its implicit Euler discretization, which can be
derived by replacing the derivatives by the finite differences,
e.g., u̇x := (ux − ux,prv)/T . Through some derivations
detailed in [10], which include the use of (8) to treat the set-
valuedness, the discrete-time algorithm for solving (14) can
be given as follows:

τ̂s := τs + τr +Mαr +Bur +K(qr − qx,prv) (15a)

q∗x :=
Mux,prv + T τ̂s
M +BT +KT 2

(15b)

{τm, qx} := SatPosCtrl(q∗x, qx,prv, qs, us, bxs,prv) (15c)
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Fig. 3. Alternative representations of admittance controllers; (a) the typical
conventional admittance controller, (b) the basic version of TBAC [10,
Sec. III], and (c) the velocity-projecting version of TBAC [10, Sec. V.B].
The function SatPosCtrl is defined in (16). For simplicity, the error integral
bxs is omitted here.

ux = (qx − qx,prv)/T (15d)
bxs := bxs,prv + T (qx − qs) (15e)

where the function SatPosCtrl, which is a ‘saturated position
controller,’ is defined as follows:

Function SatPosCtrl(q∗x, qx,prv, qs, us, bxs,prv) (16a)
τ∗∗m := Lcbxs,prv −Bc(us − (qs − qx,prv)/T ) (16b)
τ∗m := (Kc + LcT )(q

∗
x − qs) + τ∗∗m (16c)

τm := proj[−Fc,Fc] (τ
∗
m) (16d)

qx := qs +
τm − τ∗∗m

Bc/T +Kc + LcT
(16e)

Return {τm, qx}. (16f)

Note that this algorithm (15) does not involve any set-valued
functions or non-closed-form equations, in spite of the fact
that its original continuous-time representation (14) involves
set-valuedness and differential-algebraic constraints.

The structure of the algorithm (15) can be illustrated as in
Fig. 3(b). It can be interpreted as a combination of the proxy
dynamics, represented by (15a) and (15b), and a saturated
position controller, represented by the function SatPosCtrl
defined in (16). The quantity q∗x calculated by (15b) can
be seen as a ‘tentative’ proxy position without considering
the actuator saturation. This is provided to the function
SatPosCtrl, of which the outputs are the necessary torque
τm and a ‘corrected’ proxy position qx, which corresponds to
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the maximal permissible velocity under the torque limitation.
If the actuator is not saturated, the tentative proxy position q∗x
is just adopted as the proxy velocity qx. The corrected proxy
position qx is used in the next timestep.

C. Velocity-Projecting Version of TBAC

The previous paper [10] pointed out a flaw of the algorithm
(15), which is that the actuator saturation may inject kinetic
energy into the robot. When the robot is accelerated by an
external force and the actuator torque is saturated, the proxy
velocity ux is also increased, and it affects the proxy position
qx in the next timestep. This means that, when the actuator is
saturated, the work done by the external force is stored as the
kinetic energy of the proxy, as well as that of the robot. This
feature is undesirable for safety reasons.

To eliminate this flaw, the paper [10] proposed a velocity
projection method, which was referred to as a ‘Modification
B’ in [10, Section V.B]. It modifies ux so that it satisfies ux ∈
co{0, u∗

x}, which indicates that the saturation only shrinks the
proxy velocity u∗

x without altering its direction. This idea can
be realized by adding the line

ux := projco{0,u∗
x}(ux) (17)

in the end of the algorithm (15). The modified controller
(15)+(17), which can be said to be a ‘velocity-projecting
version’ of TBAC, is illustrated in Fig. 3(c). It should be
emphasized that this modification does not alter the current
proxy position qx, but does modify only the proxy velocity
ux, which influences the proxy position in the next timestep.
The underlying idea is that the proxy velocity, which is a state
variable independent from the proxy position, does not need
to satisfy ux = (qx − qx,prv)/T , although the proxy position
qx needs to be consistent with the torque τm.

IV. PROPOSED CONTROLLER

This section proposes a multi-dimensional extension of
TBAC applicable to redundant manipulators. The overall struc-
ture of the controller is illustrated in Fig. 4. The desired
dynamics of the robot are defined by two proxies, the task-
space proxy and the joint-space proxy. The task-space proxy
acts in the task space while the joint-space proxy is effective
only in the nullspace. The joint-space proxy is necessary
not only to deal with the redundancy, but also to deal with
the singular configurations, because even a non-redundant
manipulator can have a nullspace when it enters a singular
configuration. The block SatPosCtrl in Fig. 4 is an element-
wise, multidimensional version of the one defined in (16),
which acts on each joint independently. We assume that the
robot is equipped with torque sensors attached to the joints.

A. Structure

We here consider an n-DOF rigid-link manipulator with a
single end-effector. We use q ∈ Rn, u ∈ Rn, and α ∈ Rn

to denote the joint-space position, velocity, and acceleration
vectors, respectively, and they satisfy u = q̇ and α = u̇. We
also use p ∈ P, v ∈ R6, and a ∈ R6 to denote the task-
space position, velocity, and acceleration vectors, respectively.
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Fig. 4. Proposed controller. Note that the highlighted part has a structure
identical to that of Fig. 3(c). The error integral bxs is omitted here for
simplicity.

It should be noted that p ∈ P is a seven-dimensional vector
composed of the three-dimensional position-vector part and
the four-dimensional attitude-quaternion part. Each of the vec-
tors v ∈ R6 and a ∈ R6 is composed of a three-dimensional
translational part and a three-dimensional rotational part. They
are associated as v =

◦
p and a = v̇ where ◦ is the time-

derivative operator for P defined in Appendix A. We also use
τ ∈ Rn and f ∈ R6 to denote a joint torque vector and a task-
space force vector, respectively. These symbols may be used
with the subscripts s, x, and r, denoting the measured values,
the proxy values, and the reference values, respectively.

With the forward kinematics Φ : Rn → P of the manip-
ulator, we have p = Φ(q), and using the Jacobian matrix
J : Rn → R6, we have v = J(q)u. We also use the
Jacobian rate-of-change matrix H : Rn × Rn → R6 defined
as H(q, q̇) ≜ dJ(q)/dt, which satisfies v̇ = J(q)u̇ +
H(q,u)u.

As can be seen in Fig. 4, we assume that the manipulator
is equipped with joint angle sensors and joint torque sensors,
which provide the measured angle vector qs ∈ Rn and the
measured torque vector τs ∈ Rn, respectively. The proposed
controller involves two different proxies, which are the task-
space proxy and the joint-space proxy. They are governed by
certain dynamics coupled with a lexicographic prioritization,
indicated as ‘lexmin’ in the figure. The positions and the
velocities of the joint-space proxy and the task-space proxy
are kept consistent with each other through the relations
px = Φ(qx) and vx = J(qx)ux at every timestep. The output
of the controller is the command torque τm ∈ R6 sent to the
joint actuators.

Recall that the one-dimensional velocity-projecting version
of TBAC is written as (15)+(17). As its direct extension, the
algorithm of the proposed controller is given as follows:

q∗
x := TwoProxies(px,prv,vx,prv, qx,prv,ux,prv, τs) (18a)

{τm, qx} := SatPosCtrl(q∗
x, qx,prv, qs,us, bxs,prv) (18b)

ux := (qx − qx,prv)/T (18c)
bxs := bxs,prv + T (qx − qs) (18d)
ux := projco{0n,u∗

x}(ux) (18e)
px := Φ(qx) (18f)
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vx := J(qx)ux. (18g)

Here, the function TwoProxies represents the combined proxy
dynamics that will be detailed in the next Section IV-B. It
determines the tentative joint-space proxy position q∗

x, and it
is used as the input to SatPosCtrl, the saturated position con-
troller defined in (16), to obtain the joint torque command τm.
As has been detailed in Section III-B, the function SatPosCtrl
provides the corrected proxy position qx as another output,
and the line (18c) gives the corresponding proxy velocity ux

. The velocity is then ‘projected’ in (18e), resulting in a re-
corrected velocity ux. This projection operation is discussed
in Section III-C, and its multidimensional version is given as

projco{0n,u∗
x}(ux) ≜ proj[0,1]

(
u∗T
x ux

u∗T
x u∗

x

)
u∗
x. (19)

Finally, the joint-space proxy position qx and velocity ux are
converted into the task-space proxy position px and velocity
vx, respectively, through the forward kinematics.

Note that the lines (18b) to (18e) of the proposed controller
exactly correspond to the lines (15c) to (15e) plus (17) of the
one-dimensional TBAC.

B. Combined Proxy Dynamics

Now the combined proxy dynamics, which appear as the
function TwoProxies in the line (18a) of the proposed con-
troller (18), is presented. It is composed of the task-space
proxy dynamics and the joint-space proxy dynamics. The task-
space proxy dynamics is given in the following continuous-
time representation:

◦
px = vx, v̇x = ax (20a)
MT(ax − ar) +BT(vx − vr) + sat3(FT,KT(px ⊖ pr))

= fs + fr (20b)

where fs and fr ∈ R6 are the force acting on the end-
effector and the reference force, respectively, and ar ≜ v̇r

and vr ≜ ◦
pr. The matrices MT, BT, and KT ∈ R6×6

are the inertia, viscosity, and stiffness matrices, respectively,
and they are symmetric positive-definite matrices. In the third
term of the left-hand side of (20b), the function sat3, defined
in (3), is used to allow for setting upperbounds to the task-
space proxy spring force. Here, FT is a vector composed as
FT = [Ftra, Frot]

T ∈ R2 where Ftra and Frot are the limits
for the translational and rotational components, respectively.
The operator ⊖ is the subtraction operator for P, which is
defined in Appendix A.

In the dynamics (20), fs is not directly available. It however
can be assumed to satisfy the following relation with the
measured torque τs ∈ Rn:

τs ≈ J(qs)
Tfs. (21)

A discrete-time approximation of (20) can be given as
follows:

px = px,prv ⊕ Tvx, vx = vx,prv + Tax (22a)
MT (ax − ar) +BT(vx,prv + Tax − vr)

+ sat3(FT,KT(px,prv ⊖ pr)) = fs + fr. (22b)

Here, the operator ⊕ is the addition operator between P and
R6, which is defined in Appendix A. One can rewrite (22b)
as follows:

ĈTax − b̂T − fs = 06 (23)

where

ĈT ≜ MT + TBT (24)
b̂T ≜ −BTvx,prv + fr + fre (25)
fre ≜ MTar +BTvr + sat3(FT,KT(pr ⊖ px,prv)). (26)

The expression (23) can be seen as an algebraic problem
with respect to the task-space acceleration ax ∈ R6, but
to incorporate it into the framework of Fig. 4, it should be
reformulated as a problem with respect to the joint-space
acceleration αx ∈ Rn. Moreover, because the robot is assumed
to have torque sensors, we need to replace fs by τs through
the relation (21). Note that ax and αx are related by

ax=J(qx,prv)αx+H(qx,prv,ux,prv)(ux,prv+Tαx). (27)

Here, H(q,u) is the Jacobian rate-of-change, i.e., H(q, q̇) ≜
dJ(q)/dt, which can be computed by conventional methods
such as [28, Sec. 5.5] and [29]. Therefore, by substituting (27)
into (23) and left-multiplying its both sides by J(qs)

T , one
can obtain the following:

J(qs)
T ĈT(J(qx,prv) + TH(qx,prv,ux,prv))αx

−J(qs)
T
(
b̂T−ĈTH(qx,prv,ux,prv)ux,prv

)
−τs = 0n. (28)

The solution to this problem is αx, which is consistent with
the task-space proxy dynamics (20).

Meanwhile, the joint-space proxy dynamics is given in the
following continuous-time representation:

q̇x = ux, u̇x = αx (29a)
M(αx −αr) +B(ux − ur) + sat1(F ,K(qx − qr)) = τs

(29b)

where the matrices M , B, and K ∈ Rn×n are the inertia,
viscosity, and stiffness matrices, respectively, for the joint-
space proxy dynamics, and ur ≜ q̇r and αr ≜ u̇r. They
are diagonal positive-definite matrices. In the third term of the
left-hand side of (29b), the function sat1 is the one defined in
(2), and F ∈ Rn is the vector of the limits for the forces of
the joint-space proxy springs. A discrete-time approximation
of (29) can be given as follows:

qx = qx,prv + Tux, ux = ux,prv + Tαx (30a)
M (αx −αr) +B(ux,prv + Tαx − ur)

+ sat1(F ,K(qx,prv − qr)) = τs. (30b)

One can rewrite (30b) as follows:

ĈJαx − b̂J − τs = 0n (31)

where

ĈJ ≜ M + TB (32)
b̂J ≜ −Bux,prv + τre (33)
τre ≜ Mαr +Bur + sat1(F ,K(qr − qx,prv)). (34)
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The problem (31) can be seen as a problem with respect to αx

that is consistent with the joint-space proxy dynamics (29).
The task-space proxy dynamics (28) and the joint-space

proxy dynamics (31) are combined in the following manner:

α∗
x = arglexmin

αx∈R6

{∥(28)’s lhs∥M−1 , ∥(31)’s lhs∥M−1} (35)

where ‘lhs’ stands for the left-hand side. The expression (35)
means that the task-space proxy dynamics (28) is prioritized
over the joint-space proxy dynamics (31), and that the joint-
space proxy dynamics is used only in the nullspace. The
use of the weight matrix M−1 in (35) is for the asymptotic
stability of the combined dynamics, which will be discussed
in Section V. By using Corollary 1, an algorithm to solve the
problem (35) can be given as follows:

Function TwoProxies(px,prv,vx,prv, qx,prv,ux,prv, τs)(36a)
Js := J(qs) (36b)
Hx,prv := H(qx,prv,ux,prv) (36c)

Ĵx := J(qx,prv) + THx,prv (36d)

CT := M−hJT
s (MT + TBT)Ĵx (36e)

CJ := M−h(M + TB) (36f)
fre := MTar+BTvr+sat3(FT,KT(pr ⊖ px,prv)) (36g)
τre := Mαr +BJur + sat1(F ,K(qr − qx,prv)) (36h)
bT := M−h

(
JT
s

(
−BTvx,prv

−(MT + TBT)Hx,prvux,prv+fr+fre

)
+ τs

)
(36i)

bJ := M−h(−Bux,prv + τre + τs) (36j)
CTJ := CTC

−1
J (36k)

α∗
x := C−1

J C+
TJbT +C−1

J

(
In −C+

TJCTJ

)
bJ (36l)

u∗
x := ux,prv + Tα∗

x (36m)
q∗
x := qx,prv + Tu∗

x (36n)
Return q∗

x. (36o)

It should be noted that the solution of (35) is α∗
x obtained

by (36l) and that the output of this function is its resultant
proxy position q∗

x. This function is to be used in the first line
of the proposed controller algorithm (18). Recall that M−h

is a matrix satisfying M−1 = M−hTM−h as defined in
Section II-A. Specifically, if M is a diagonal positive-definite
matrix, M−h can be simply chosen as M−h = M−1/2,
which is the diagonal matrix whose diagonal elements are the
reciprocals of the square roots of the diagonal elements of M .

C. Computation of the Pseudoinverse C+
TJ

We now discuss the computation of the pseudoinverse
C+

TJ in the function TwoProxies, i.e., the algorithm (36).
The matrix CTJ is an n × n square matrix, but it is not
invertible because its rank is at most 6 and can be less in the
singular configurations. The matrix CTJ can be decomposed
as CTJ = CsCx where

Cs ≜ M−hJT
s (MT + TBT) ∈ Rn×6 (37)

Cx ≜ Ĵx(M + TB)−1Mh ∈ R6×n. (38)

Therefore, if both Cs and Cx are full-rank, we have C+
TJ =

C+
x C+

s . Thus, C+
TJ can be approximately obtained as follows:

C+
TJ ≈ CT

x (CxC
T
x + εxI6)

−1(CT
s Cs + εsI6)

−1CT
s . (39)

Here, εx and εs are small positive values to deal with the case
where Jx, Js, or both are rank-deficient. This approximation
can be seen as an application of the damped pseudoinverses
(cf., e.g., [15], [30], [31]). It requires careful choice of the
values of εx and εs, and can cause a certain level of inaccuracy
even when the robot is away from the singular configuration.

The following introduces an alternative approximation of
C+ that coincides with the exact C+ when the robot is outside
a specified distance from singular configurations. Recall that
the matrix CTJ ∈ Rn×n can be decomposed as CTJ =
UΣV T where U ∈ Rn×n and V ∈ Rn×n are orthogonal
matrices and Σ ∈ Rn×n is a diagonal matrix whose diagonal
elements are the singular values of the matrix CTJ. The
pseudoinverse C+

TJ ∈ Rn×n is obtained as C+
TJ = V Σ+UT .

Here, the matrix Σ+ is the n× n diagonal matrix whose i-th
diagonal element is

σ+
i ≜

{
1/σi if σi ̸= 0
0 if σi = 0

(40)

where σi is the i-th diagonal element of Σ. This definition
injects the discontinuity around σi = 0, and also causes an
excessively large value of σ+

i when σi is non-zero but very
small. One alternative is to replace σ+

i by the following:

σ⊕
i ≜ σi

max(σ2
i , ε

2)
=

{
1/σi if |σi| > ε
σi/ε

2 if |σi| ≤ ε
(41)

where ε > 0 is a parameter appropriately chosen. With this
replacement, one can obtain the matrix C⊕

TJ ≜ UΣ⊕V T

where Σ⊕ is the n × n diagonal matrix with the diagonal
elements defined in (41). Hereafter, we refer to C⊕

TJ as a
continualized pseudoinverse of CTJ.

One advantage of the presented continualized pseudoinverse
C⊕

TJ is that it exactly coincides with the original pseudoinverse
C+

TJ as long as the singular values are either the exact zero
or above the threshold ε. As for CTJ, it has six non-zero
singular values when Jx and Js are full-rank, i.e., when the
robot is not in the singular configurations. Therefore, as long
as its largest six singular values are above the threshold ε,
C⊕

TJ = C+
TJ is satisfied, and thus α∗

x obtained by (36l) is the
accurate solution of the lexicographic minimization problem
(35).

It should be noted that all elements of CTJ are dimension-
less quantities, and consequently, the singular values of CTJ

are also dimensionless. This property is not generally true for
arbitrary matrices; a matrix whose elements have different
physical dimensions may have singular values having no
consistent physical dimensions. Because the singular values of
CTJ are dimensionless and physically consistent, the threshold
ε used in (41) can also be understood as a physically consistent
dimensionless quantity. This is not the case with (39), where
neither εs nor εx has a consistent physical dimension.

Although the threshold ε is physically consistent, its choice
still requires careful consideration. The threshold ε determines
whether the task-space or the joint-space admittance is active
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in each direction; the task-space admittance is active in di-
rections in which the singular value of CTJ is above ε, and
the joint-space admittance is active otherwise. If T is small
enough, the matrix CTJ reduces to the following:

CTJ ≈ M−hJT
s MTJxM

−hT . (42)

The matrix JT
s MTJx ∈ Rn×n appearing here can be inter-

preted as the task-space inertia evaluated in the joint space.
Thus, CTJ can be interpreted to represent the ratios of the task-
space inertia JT

s MTJx to the joint-space inertia M evaluated
in the joint space. In fact, in the vicinity of the singular
configuration, the task-space inertia JT

s MTJx becomes lower
in a particular direction in the joint space, which jeopardizes
the stability. In this light, ε could be chosen considering
the lowest permissible task-space inertia in comparison to
the joint-space inertia. Although we currently do not have a
definitive guideline for the choice of ε, we chose ε = 0.03
in our experimental setup comprising a 7-DOF manipulator,
detailed in Section VI, through some preliminary experiments.

D. Parameter Tuning
The proposed controller depends on several parameters

that need to be chosen appropriately. Although clear tuning
guidelines remain an open problem, factors relevant to the
choice of parameters are summarized below:

• The torque limit Fc for each joint, which is a parameter
of the function SatPosCtrl, should be set considering the
rated torque of the joint actuator or safety requirements
for the application. It may need to be chosen considering
the trade-off between the control performance (such as
load-carrying capacity) and the safety.

• The PID gains {Kc, Lc, Bc} for each joint, which are also
parameters of the function SatPosCtrl, should be chosen
so that the joint-level PID position control performs as
accurately as possible. These gains can be tuned through
trial and error or using conventional methods such as
Ziegler-Nichols ultimate sensitivity method [32].

• The joint-space proxy parameters {M ,B,K,F } should
be chosen to realize stable joint-independent admittance
control. In general, lower M and B increase respon-
siveness but may deteriorate the stability. This tuning
can be performed by temporarily disabling the task-space
admittance control by overwriting C+

TJ := O7×7 in the
function TwoProxies, which makes the controller equiv-
alent to the collection of one-dimensional TBAC [10]
independently applied to the joints.

• The task-space proxy parameters {MT,BT,KT,FT}
should be chosen to realize stable task-space admittance
control. The tuning of these parameters can be performed
in the same principle as those for the joint-space param-
eters, in the sense that lower inertia and viscosity lead to
higher responsiveness but lower stability.

• The parameter ε should be chosen as small as possible
without causing oscillations when the robot is fully
stretched. Based on experimental observations, ε = 0.03
was found to be a reasonable choice for our experimental
setup comprising the 7-DOF manipulator introduced in
Section VI.

V. STABILITY ANALYSIS

A. Combined Proxy Dynamics

We here analyze the stability properties of the combined
proxy dynamics, which are defined in Section IV-B and
realized by the algorithm (36) in the discrete-time domain.
For simplicity, we assume that the position controller is not
saturated and is perfectly accurate. Then, we have Jx = Js.
For notational brevity, we omit the subscript x within this sec-
tion. Then, the continuous-time representation of the combined
proxy dynamics realized by the algorithm (36) can be written
as follows:

q̇ = u (43a)
u̇ = arglexmin

α∈Rn

({
∥JTMTJα+ JT (BTJ +MTH)u

+JTθT(Φ(q)⊖ pr)− JTfe∥2M−1 ,

∥Mα+Bu+ θ(q − qr)− τe∥2M−1

})
(43b)

where

fe ≜ MTar +BTvr + fsr (44)
τe ≜ Mαr +Bur + τs (45)
fsr ≜ fs + fr, (46)

and θT : R6 → R6 and θ : Rn → Rn are functions defined
as follows:

θT(∆p) ≜ sat3(FT,KT∆p) (47)
θ(∆q) ≜ sat1(F ,K∆q). (48)

Note that the state vector of the system is [qT ,uT ]
T ∈ R2n.

With some tedious but straightforward derivations using
Corollary 1, one can rewrite (43b) in the following form:

u̇=−J#M−1
T ((BTJ+MTH)u+θT(Φ(q)⊖ pr)− fe)

−M−1(In−JTJ#T )(Bu+ θ(q − qr)− τe) (49)

where

J# ≜ M−hT (MhT
T JM−hT )+MhT

T ∈ Rn×6. (50)

Recall that MT = Mh
TM

hT
T and M−1 = M−hTM−h. The

matrix J# satisfies the following relations:

J#JJ# = J# (51a)
JJ#J = J (51b)
JJ#M−1

T = M−1
T J#TJT = JJ#M−1

T J#TJT (51c)
J#JM−1 = M−1JTJ#T = J#JM−1JTJ#T . (51d)

Note that J# has similar properties to those of the dynamically
consistent Jacobian inverse [33], [34].

Left-multiplying the both sides of (49) by J yields the
following:

Ju̇ = −M−1
T J#TJT

(
(BTJ +MTH)u

+θT(Φ(q)⊖pr)− fe). (52)

In addition, left-multiplying the both sides of (52) by JTMT

yields the following:

JTMT
dJu

dt
= −JT

(
BTJu+ θT(Φ(q)⊖pr)− fe) (53)
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where we used dJu/dt = v̇ = Hu+Ju̇. Equation (53) can
be seen as a representation of the task-space dynamics realized
by (49).

Moreover, left-multiplying (52) by J# results in

J#Ju̇=−J#M−1
T

(
(BTJ +MTH)u

+θT(Φ(q)⊖pr)− fe) (54)

where we used J#M−1
T J#TJT = J#M−1

T . Noticing that
the right-hand side of (54) is identical to the first term of the
right-hand side of (49), one can rewrite (49) as follows:

u̇ = −M−1(In − JTJ#T )(Bu+ θ(q − qr)− τe)

+J# (v̇ −Hu) (55)

where we used Ju̇ = v̇ −Hu. Equation (55) can be seen as
a representation of the joint-space dynamics realized by (49).
The relations (53) and (55) will be used in the subsequent
analysis.
B. Stability Under Constant References and Constant External
Forces

This section restricts the discussion to the case where pr,
qr, fsr(= fs+fr), and τs are constant, i.e., where vr, ar, ur,
and αr are zero. Equilibria of the system under this restriction
can be inferred by careful observation of (53) and (55), which
are derived from (49); with (53) and (55), u̇ = 0n and u = 0n

can hold true if q satisfies the following conditions:

JT (θT(Φ(q)⊖ pr)− fsr) = 0n (56)
(In − JTJ#T )(θ(q − qr)− τs) = 0n. (57)

This means that the system is in equilibrium when q satisfies
(56) ∧ (57) and u = 0n. The following analysis investigates
the stability of this equilibrium.

We here use the following functions:

VT ≜ 1

2
uTJTMTJu+ΘT(Φ(q)⊖ pr)

−fT
sr(Φ(q)⊖ pr) (58)

VJ ≜ 1

2
uTMu+Θ(q − qr)− τT

s (q − qr) (59)

where ΘT : R6 → R and Θ : Rn × Rn → R are functions
satisfying the following:

∂ΘT(∆p)

∂∆pT
= θT(∆p),

∂Θ(∆q)

∂∆qT
= θ(∆q). (60)

The functions VT and VJ can be said to be the task- and joint-
space energy functions, respectively, and the functions ΘT and
Θ can be said to be the task- and joint-space elastic potential
energy functions, respectively.

From (53), the task-space energy function VT can be dif-
ferentiated as follows:

V̇T = −uTJT (BTJu+ θT(Φ(q)⊖ pr)− fsr)

+(Ju)TθT(Φ(q)⊖ pr)− fT
srJu

= −uTJTBTJu ≤ 0. (61)

The condition V̇T = 0 holds when Ju = 06. From (53), the
invariance set under the condition Ju = 06 can be obtained
as

XT ≜ {[qT ,uT ]T ∈ R2n | Ju = 06 ∧ (56) }. (62)

Therefore, from LaSalle’s Invariance Principle, the set XT

is positively invariant and asymptotically stable. That is, we
have v ≜ Ju → 06 and JT (θT(Φ(q)⊖ pr)− fsr) → 0n as
t → ∞.

Meanwhile, from (55), the joint-space energy function VJ

can be differentiated as follows:

V̇J = uT (Mu̇+ θ(q − qr)− τs)

= −uT (In − JTJ#T )Bu+ uTJTJ#T (θ(q − qr)− τs)

+uTMJ#(v̇ −Hu)

= −uTBu+ vTJ#T
(
Bu+ θ(q − qr)− τs

+MJ#(v̇ −Hu)
)
. (63)

This expression implies that V̇J ≤ 0 is satisfied when v = 06,
and that V̇J = 0 is satisfied when u = 0n. In addition, (55)
implies that the invariance set under the condition (56) ∧ u =
0n can be written as

X J ≜ {[qT ,uT ]T ∈ R2n | u = 0n ∧ (56)∧ (57) }. (64)

Therefore, from LaSalle’s Invariance Principle, as long as
[qT ,uT ]T ∈ XT, the set X J ⊂ XT is asymptotically
stable. Because XT is asymptotically reached by [qT ,uT ]T ,
one can see that the set X J ⊂ XT is also asymptotically
stable with the combined proxy dynamics (43). This means
that the task-space position p = Φ(q) eventually converges
to the position satisfying (56) and the nullspace motion also
eventually settles, bringing the entire system into a steady state
at the configurations q satisfying (56) ∧ (57).

If fsr and τs are zeros and pr is within the reachable
workspace of the robot except for the singular configura-
tions, i.e., so that there exists q such that Φ(q) = pr and
rankJ(q) = 6, the condition (56) ∧ (57) reduces to

Φ(q) = pr ∧ (In − JTJ#T )θ(q − qr) = 0n. (65)

Moreover, if fsr and τs are zeros and qr and pr are set as
pr = Φ(qr) and rankJ(qr) = 6, the condition (56) ∧ (57)
reduces to q = qr. This means that, if fsr and τs are zeros,
pr is set within the reachable workspace of the robot, and qr
is set consistent with pr, the combined proxy dynamics (43)
drives q to qr, resulting in the task-space position satisfying
Φ(q) = pr.

Remark 1. It should be noted that, when J is full-rank,
J# in (50) reduces to J# = M−1JT (JM−1JT )−1, which
coincides with the dynamically consistent Jacobian inverse
[33], [34]. According to its original definition, the dynamically
consistent Jacobian inverse J# is a matrix that satisfies the
following:

∀τ ∈ Rn, JM−1τ = JM−1JTJ#T τ , (66)

which means that J#T maps any torque vector τ to a task-
space force vector f that results in the same task-space
acceleration a as τ results in according to the joint-space
dynamics. The matrix J# defined in (50) satisfies (66) and
also the following:

∀τ ∈ Rn, ∃α ∈ Rn s.t. Jα = M−1
T J#T τ , (67)
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which means that J#T maps any torque vector τ to a
task-space force vector f that results in a kinematically-
realizable task-space acceleration a according to the task-
space dynamics. In conclusion, J# in (50) acts as a Jacobian
inverse that is consistent both in the joint-space dynamics and
the task-space dynamics.

Remark 2. The discrete-time algorithm (36) involves C+
TJ

instead of J#. Recall that, by setting T small enough, CTJ

can be written as (42). From this, its pseudoinverse can be
given as follows:

C+
TJ = (MhT

T JxM
−hT )+(M−hJT

s Mh
T)

+

= MhTJ#
x M−1

T J#T
s Mh. (68)

This implies that the proposed algorithm (36) implicitly and
approximately involves the matrices J#

x and J#
s . In addition,

the term C+
TJCTJ, which appears in (36l), is related to J#

x

and J#
s by the following:

C+
TJCTJ = MhTJ#

x M−1
T J#T

s JT
s MTJxM

−hT

= MhTJ#
x JsJ

#
s JxM

−hT , (69)

and, by assuming Js ≈ Jx = J , it reduces to

C+
TJCTJ ≈ MhTJ#JM−hT = M−hJTJ#TMh. (70)

This expression allows for the interpretation of (36l) in relation
to the so-called nullspace projector [20], [22], which may be
helpful for further theoretical investigation.

C. Effect of the Weight Matrices

Here we show that the weight matrix M−1 appearing in the
discrete-time representation (35) and the continuous-time one
(43b) is necessary to guarantee the stability of the task-space
dynamics. Let us consider the case where (43b) is replaced by

u̇ = arglexmin
α∈Rn

({
∥JTMTJα+ JT (BTJ +MTH)u

+JTθT(Φ(q)⊖ pr)− JTfe∥2XTX ,

∥Mα+Bu+ θ(q − qr)− τe∥2Y TY

})
(71)

where X and Y are square matrices. Then, from Corollary 1,
it results in

u̇ = (Y M)−1
(
C+XJT cT + (I −C+C)Y cJ

)
(72)

where

C ≜ XJTMTJ(Y M)−1 (73)
cT ≜ (BTJ +MTH)u+ θT(Φ(q)⊖ pr)− JTfe (74)
cJ ≜ Bu+ θ(q − qr)− τe. (75)

Left-multiplying the both sides of (72) by JTMTJ yields the
following:

JTMTJu̇ = −X−1CC+XJT cT. (76)

Note that the obtained (76) is equivalent to (53) only if

X−1CC+XJT = JT (77)

is satisfied, and the satisfaction of (77) is needed to guarantee
the stability of the set XT defined in (62) by satisfying V̇T ≤

0. In order to satisfy (77), one sufficient condition is X =
Y = M−h. This means that the weight matrices need to be
chosen to guarantee the stability of the task-space dynamics,
and XTX = Y TY = M−1 is an appropriate choice.

D. Stability Under Time-Varying References and Time-Varying
External Forces

This section analyzes the case where the reference signals
{pr,fr} and the external forces {fs, τs} are time-varying.
The analysis here focuses on the local stability around the
equilibrium, and is currently restricted to the case under the
following assumptions:

• There exists an equilibrium q ∈ Rn satisfying (56) ∧
(57).

• In the neighborhood of the equilibrium, J is full-rank.
• In the neighborhood of the equilibrium, the task- and

joint-space stiffness terms are not saturated
These assumptions mean that there exists a q that satisfies the
following:

Φ(q) = pr ⊕K−1
T fsr (78)

(In − JTJ#T )(K(q − qr)− τs) = 0n. (79)

Let us redefine the task-space energy function as follows:

VT ≜ 1

2
(Ju− vr)

TMT(Ju− vr)

+(Φ(q)⊖ pr)
T

(
1

2
KT(Φ(q)⊖ pr)− fsr

)
. (80)

This function takes its minimum value 0 when Ju = vr ∧
(78). Through tedious but straightforward derivations, its time
derivative can be obtained as follows:

V̇T =−(Ju− vr)
TBT(Ju− vr)− (Φ(q)⊖ pr)

T ḟsr

−vT
r (I6 − J#TJT )

(
MT(Hu− ar)

+BT(Ju− vr) +KT(Φ(q)⊖ pr)− fsr

)
=−(Ju− vr)

TBT(Ju− vr)− (Φ(q)⊖ pr)
T ḟsr. (81)

Here we used JJ# = I6 based on the full-rank assumption of
J . The inequality (81) implies that V̇T ≤ 0 is satisfied when
ḟsr = 0n, and V̇T = 0 is satisfied when Ju = vr ∧ ḟsr = 0n.
The expression (53) implies that the maximum invariance
subset of the set satisfying Ju = vr is the set satisfying
Ju = vr ∧ (78), in which VT = 0. Therefore, from LaSalle’s
Invariance Principle, the set satisfying Ju = vr ∧ (78)
is locally asymptotically stable. According to the Lyapunov
converse theorem, this local asymptotic stability ensures the
existence of a strict Lyapunov function in a neighborhood of
this set, and its existence implies the local uniform ultimate
boundedness of the state around the set when ∥ḟsr∥ is small
enough. In conclusion, the end-effector position p = Φ(q)
tracks the position pr ⊕ K−1

T fsr as long as ḟsr is small
enough.

The remaining problem is the convergence of the nullspace
dynamics. Unfortunately, the available results require an ad-
ditional assumption, as follows:

• There exist β > 0 and κ > 0 satisfying B = βM and
K = κM , i.e., the joint-space viscosity and stiffness
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matrices are scalar multiples of the joint-space inertia
matrix.

This assumption is made to satisfy JTJ#TB = BJ#J and
JTJ#TK = KJ#J , which are required for the subsequent
derivation. This assumption may not be very restrictive in
practice because most applications would not require such
careful design of the nullspace dynamics.

For notational brevity, let us define Π ≜ In − JJ#. Then,
from (55), one can obtain the following:

MΠα̃+BΠũ+KΠq̃ = 0n (82)

where α̃ ≜ u̇−αr, ũ ≜ u− ur, and q̃ ≜ q − qr −K−1τs.
It leads to the following expression:

d

dt

[
Πq̃
Πũ

]
=

[
On×n In
−κM −βM

] [
Πq̃
Πũ

]
+

[
Π̇q̃ −ΠK−1τ̇s

Π̇ũ

]
. (83)

Let us define a joint-space energy function as follows:

VJ ≜ 1

2

[
Πq̃
Πũ

]T
P

[
Πq̃
Πũ

]
(84)

where

P ≜
[

κM (2κβ/(4κ+ β2))M
(2κβ/(4κ+ β2))M M

]
. (85)

Note that P is a symmetric positive-definite matrix. Then, its
time derivative can be obtained in the following form:

V̇J = −
[

Πq̃
Πũ

]T
Q

[
Πq̃
Πũ

]
+ e (86)

where Q is a symmetric positive-definite matrix dependent on
κ, β, and M , and

e ≜
[

Πq̃
Πũ

]T
P

[
Π̇q̃ −ΠK−1τ̇s

Π̇ũ

]
. (87)

From the derivation in Appendix C, one has

Π̇ = −J#HΠ−ΠM−1HTJ#TM . (88)

Substituting the above into (87) and using the facts ΠTM =
MΠ and ΠJ# = On×6, one obtains the following:

e = −
[

Πq̃
Πũ

]T
P

[
M−1HTJ#TMq̃ +K−1τ̇s

M−1HTJ#TMũ

]
. (89)

The inequality (86) implies that V̇J ≤ 0 is satisfied as long as
e is small enough, and (89) implies that e is small when H
and τ̇s are small. Considering the definition of H , H at the
equilibrium is small when ur and vr are small. Therefore, one
can see that the set Πq̃ = 0n ∧ Πũ = 0n is asymptotically
stable if τ̇s, ur, and vr are sufficiently small, implying that
the nullspace motion eventually settles.

The analysis presented here is built on some restrictive
assumptions, and the obtained result only concerns local
stability. The relaxation of these assumptions, the clarification
of upper bounds for ∥ḟsr∥, ∥τ̇s∥, ∥ur∥, and ∥vr∥, as well
as the characterization of the region of attraction, still remain
open problems.

Fig. 5. Experimental setup (Kinova Gen 3).

VI. EXPERIMENTS

A. Experimental Setup

The proposed method was tested with an experimental
setup shown in Fig. 5, which is a Kinova Gen3 robot. It
has seven joints equipped with torque sensors. The robot was
connected to a PC running Windows OS, and the controllers
for the robot were constructed with Microsoft Visual C++.
The sampling interval of T = 0.001 s was realized with
QueryPerformanceCouner function of Win32 API.

The proposed controller, which is the algorithm (18) with
the function TwoProxies in (36) and the function SatPosCtrl
in (16), was implemented to the PC. The basic settings for the
controller parameters were chosen following the guidelines
outlined in Section IV-D. More specifically, the following
procedure was used. First, the torque limits Fc for the joints
were set as 80 % of the maximum torque [35]; Fc =
43.2 Nm for the first four joints and Fc = 27.2 Nm for
the other joints. Second, the proxy dynamics were disabled
(i.e., q∗

x in (18) was kept constant), and the gain values (Kc,
Bc, and Lc) for the function SatPosCtrl were chosen so
that the joint angles were stiffly maintained at q∗

x. Through
some trial and error, they were chosen as {Kc, Bc, Lc} =
{1500 Nm, 30 Nms, 300 Nm/s} for the first four joints and
{1000 Nm, 20 Nms, 200 Nm/s} for the other joints. Third,
the task-space proxy dynamics was disabled by overwriting
C+

TJ := O7×7 in the function TwoProxies, and the joint-
space proxy parameters were chosen to realize stable joint-
independent admittance control, resulting in:

M = diag [1.5, 1.2, 0.8, 0.8, 0.4, 0.4, 0.4] kg·m2 (90a)
B = (2 s−1)×M (90b)
K = (1 s−2)×M , (90c)

which realizes critical damping with the time constant of 1 s.
The force limits for the joint-space proxy springs were set as

F = [30, 30, 30, 30, 20, 20, 20]T Nm. (91)

The reference position for the joint-space proxy was set as
follows:

qr ≡ [0, 0, 0, 0, 0, 0, 0]T rad. (92)

Finally, the task-space proxy parameters were chosen to
realize stable task-space admittance control. Some preliminary
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experiments resulted in:

MT = blockdiag [(2.5 kg)× I3, (0.25 kg·m2)× I3] (93a)
BT = (4 s−1)×MT (93b)
KT = (4 s−2)×MT, (93c)

which realizes critical damping with the time constant of 0.5 s.
The force limit for the task-space proxy spring was set as

FT = [100 N, 10 Nm]T . (94)

Unless otherwise noted, the reference position for the task-
space proxy was set as

pr ≡ [0.5 m, 0 m, 0.4 m, 0, 0, 1, 0]T , (95)

and the reference force was set as fr ≡ 06.
In the function TwoProxies, the pseudoinverse C+

TJ was
replaced by the continualized pseudoinverse C⊕

TJ, detailed in
Section IV-C, where the parameter ε was chosen as ε = 0.03.
It was chosen as small as possible without causing oscillations
when the robot was fully stretched.

The gravity compensation was performed by computing the
gravity torques from the mass parameters of the links provided
in [35]. The computed gravity torques were superposed to the
output τm of the controller (18).

To investigate the necessity of individual components of the
proposed controller, some ablated versions of the proposed
controller were compared, which are as follows:

• Controller C1: a controller in which the function
SatPosCtrl was replaced by an ordinary torque-saturated
PID controller, i.e., with the line (16e) being replaced by
qx := q∗. It means that its internal position controller
was a PID controller that saturates the torque without
maintaining consistency with the proxy position qx. This
controller was employed to illustrate the proposed con-
troller’s capability of handling actuator torque saturation.

• Controller C2: a controller with the velocity projection
being disabled, with the line (18e) removed from the algo-
rithm (18). It is to illustrate the necessity of the velocity-
projecting operation, without which the controller would
have been simpler.

• Controller C3: a controller with the continualized pseudo-
inverse C⊕

TJ being replaced by the damped approximation
of C+

TJ in (39). It is to illustrate the effect of the
continualized pseudoinverse C⊕

TJ. The parameter values
εx = εs = 0.004 were chosen through some preliminary
experiments so that they were as small as possible without
causing oscillations when the robot was fully stretched.

Controllers dependent on the robot’s dynamics model, such
as those in [17], [20], [22], were not included in the empirical
comparison because the performance of such controllers would
depend on the accuracy of the model. Being free from an
explicit dynamics model can count as an advantage of the
proposed controller, particularly for robots with highly fric-
tional joints and complex dynamics. Admittance controllers
for position-commanded or velocity-commanded robots, such
as those in [18], [19], [23], [36], were not experimentally
compared either because they are inherently incapable of
dealing with the actuator torque saturation.
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Fig. 6. Experiment IA. (a) Snapshots. (b) End-effector position in x and y
directions and the singular values of CTJ. (The vertical lines in the graphs
correspond to the snapshots.)

(a)

(b)

(c)

t=4.5 s t=5.57 s t=8.87 s

t=3.87 s t=6.17 s t=9.53 s

t=2.77 s t=3.93 s t=6.37 s

Fig. 7. Snapshots of (a) Experiment IB, (b) Experiment IC, and (c)
Experiment ID.

Videos of the following experiments are included in the
multimedia attachment of this paper.

B. Experiments IA to ID: Moved by Hand

The first set of experiments was conducted to validate
the task-space admittance control realized by the proposed
method. As an Experiment IA, the experimenter performed
the maneuver shown by the snapshots in Fig. 6(a), which is
divided into the following periods:

• Period A (t ∈ [0 s, 6 s]): The experimenter lightly pushed
the end-effector right and left, in the y direction, by his
palm, without holding it.

• Period B (t ∈ [6 s, 9 s]): The experimenter pulled the
end-effector in the +x direction.

• Period C (t ∈ [9 s, 14 s]): The experimenter removed
his hand from the end-effector.
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Fig. 8. Results of Experiment II. (a) Proposed controller. (b) Controller C1, with the function SatPosCtrl being replaced by an ordinary torque-saturated
PID controller. (c) Controller C2, with the velocity projection being disabled. Note that the scales of the x- and z-position graphs are magnified by a factor
of 5 from that of the y-position.

Fig. 6(b) shows the singular values of the matrix CTJ during
the maneuver.

As can be seen in Fig. 6(a), in Period A, the end-effector
moved horizontally almost along a straight line without chang-
ing the attitude, although the experimenter did not attempt to
hold it at a fixed attitude. It indicates the validity of the task-
space dynamics realized by the proposed controller. In Period
B, the robot came into a singular configuration, and some
singular values became smaller as in Fig. 6(b). It indicates that
the controller tolerates the singular configuration. In Period
C, the robot returned to the original position, which was the
reference position pr, indicating the spring term in the task-
space proxy dynamics (20) worked properly.

Additional trials were performed with different parameter
settings. As an Experiment IB, the rotational components of
{MT,BT,KT,FT} were scaled by 1000 from the values in
(93), and the experimenter moved the end-effector randomly
around the initial position. As seen in Fig. 7(a), the end-
effector was moved without changing its attitude, indicating
the validity of the task-space dynamics realized by the pro-
posed controller.

As an Experiment IC, the translational components of
{MT,BT,KT,FT} were scaled by 1000 from the values in
(93), and the experimenter attempted to rotate the end-effector
randomly. As seen in Fig. 7(b), the end-effector changed its
attitude without changing its position. It should be emphasized
that it even passed through the wrist singular configuration, as
can be seen in t = 6.17 s of Fig. 7(b). This behavior indicates

that the controller properly realizes the rotational dynamics
and maintains validity even in singular configurations.

As an Experiment ID, all elements of {MT,BT,KT,FT}
were scaled by 1000 from the values in (93), and the ex-
perimenter pushed the elbow joint of the robot. As seen in
Fig. 7(c), the robot moved only its elbow part without mov-
ing the end-effector, indicating the validity of the nullspace
dynamics realized by the proposed controller.

C. Experiment II: Behavior Under Torque Saturation

Another set of experiments was performed to test the effect
of torque saturation. In this experiment, the parameter Fc,
which determines the saturation level of each joint torque, was
set to be 30 % of each value indicated in Section VI-A. The
task-space proxy parameters {MT,BT,KT,FT} were scaled
by the factor 1000 from the values in (93) except those in the
y direction so that the end-effector motion was guided along
the y direction. The robot was initially set at pr in (95), and
the experimenter moved the end-effector left and right, in the
y direction, by holding it by hand.

Experiments were performed with three controllers: the
proposed controller and Controllers C1 and C2 introduced in
Section VI-A. Fig. 8 (a) shows the results of the proposed
controller; the measured position ps, the task-space proxy
position px, the reference position pr, and the command
torque τm,1 of the base (first) joint. It is shown that the torque
τm,1 was saturated but the proxy position px remained close
to the measured position ps, resulting in stable behavior. In
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fact, after t = 7 s when the experimenter removed the hand
from the robot, the robot reached a settled state.

Fig. 8(b) shows the results of Controller C1, in which
the function SatPosCtrl was replaced by an ordinary torque-
saturated PID controller. Also in this trial, the experimenter
held the end-effector and attempted to move it left and right,
in the y direction. It can be seen from the figure that, once the
torques were saturated, the proxy position qx deviated from
the actual position qs. In this case, the experimenter’s hand
was pulled by the force swinging around unpredictably, and he
had to grasp the end-effector tightly to prevent unsafe motion.
The experimenter eventually had to stop the robot at t = 8.5 s
to prevent further violent behaviors.

Fig. 8(c) shows the results of Controller C2, in which the
velocity projection was disabled. Although it is not apparent
from the figure, the experimenter felt a lighter resistance from
the robot than in the case with the proposed controller, and
also felt a pulling force in unpredictable directions from the
robot. In fact, Controller C2 resulted in larger positional errors
in the x and z directions from the reference position pr than
the proposed method, as can be seen from the figure.

These results suggest that the proposed controller properly
inherits the beneficial properties of TBAC as seen in Fig. 8(a),
and it is effective in preventing such undesirable, unsafe
behaviors seen in Fig. 8(b). The velocity projection can also be
said to be desirable for enhancing safety and accuracy under
torque saturation, as can be seen in Fig. 8(c).

D. Experiment III: Trajectory Tracking with Disturbance on
Elbow

Experiment III was conducted to test the trajectory tracking
capability of the proposed controller. A time-varying reference
pr(t) for the end-effector position was given to the controller,
which was a sinusoidal trajectory between the two positions
prA ∈ P and prB ∈ P shown in Fig. 9(a). Specifically, the
reference position pr(t) was given as follows:

pr(t) = prA ⊕
(
1− cos(2πt/TS)

2
(prB ⊖ prA)

)
(96)

where TS = 4 s. The parameters {MT,BT,KT,FT} for the
task-space proxy were scaled by the factor of 1000 from the
values in (93). In the middle of the motion, the experimenter
applied a pushing force on the elbow part of the robot, as
shown in the right-most snapshot in Fig. 9(a).

The results are shown in Fig. 9(b), which shows the y
component of the end-effector position and the angle qs,1
of the first joint. One can see that the trajectory tracking of
the end-effector was properly realized, allowing the nullspace
motion (seen in the first joint motion) according to the external
force. Despite the large displacement of the first joint, the end-
effector trajectory was not much disturbed. In addition, the
displaced first joint returns to the original position after the
experimenter’s hand was removed, which can be attributed to
the joint-space proxy spring.

Controller C3, with the damped pseudoinverse in (39),
was also tested in the same experimental procedure, and the
results are shown in Fig. 9(c). It shows that Controller C3
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Fig. 9. Experiment III. (a) Snapshots of two reference positions, prA and
prB , and how the elbow was pushed by the experimenter. (b) Results of the
proposed controller. (c) Results of Controller C3. (d) Comparison of tracking
errors. Note that the errors in t ∈ [5 s, 8 s] were caused by the external
force intentionally applied by the experimenter’s hand, which may have varied
across trials.

resulted in a slightly larger tracking error than that of the
proposed controller. Fig. 9(d) compares the tracking error
∥ps,1:3 − pr,1:3∥ between the two controllers, showing that
Controller C3 indeed resulted in larger tracking error than the
proposed controller. It can be attributed to the fact that the
damped pseudoinverse produces a certain level of inaccuracy
even when it is away from the singularity, while the proposed
continualized pseudoinverse does not.

E. Experiment IV: Contact Force Control

Experiment IV was performed to test the capability of
the proposed controller in the contact force control. As a
contact environment, a cardboard box was placed below the
end-effector as shown in Fig 10(a). The reference force was
set as fr = [0, 0, fr,3, 0, 0, 0]

T and fr,3, which is the z
component of the translational reference force, was varied in
a step-like manner among 0 N, 10 N, and 20 N. To prevent
oscillation that happened in preliminary experiments involving
the environment contact, all elements of {MT,BT,KT,FT}
were scaled by 20 from the values in (93) except the (3, 3)-th
element of KT being set zero.
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Fig. 10. Experiment IV. (a) Robot pushing the contact environment. (b)
Contact force and reference force in the z direction.

The results are shown in Fig. 10(b). The graph shows
the third element (z component) of the force vector fs =
J(qs)

+τs. The results show that the contact force fs,3 ap-
propriately tracked the negative of the reference force −fr,3,
showing the applicability of the proposed admittance controller
as a contact force controller.

F. Experiment V: Unreachable Reference Position

Experiment V was performed to test the controller’s re-
sponse to the reference position pr set outside the reachable
workspace. The reference position pr was initial set as (95)
and was linearly moved to pr = [0 m, 0 m, 1.5 m, 1, 0, 0, 0]T

from t = 0 s to t = 5 s. This pr represents a position right
above the robot base with an upward-pointing attitude, located
outside the robot’s reachable workspace. After t = 10 s, the
experimenter applied some forces on the end-effector and the
links.

Fig. 11(a) shows some snapshots of this experiment and
Fig. 11(b) shows the temporal changes of the end-effector
positions and the singular values of CTJ. It can be seen that
the robot reached an equilibrium at a configuration pointing
straight upward around t = 5 s. After this, three of the singular
values of CTJ were below the threshold ε. Between t = 8 s
and t = 11 s, the experimenter was able to twist the middle
links, indicating the validity of the joint-space dynamics
realized in the nullspace. Then, the experimenter moved the
end-effector by lightly holding it, and the end-effector moved
without much change in the end-effector attitude, exhibiting
the validity of the task-space admittance control. After the
experimenter removed his hand from the robot, the robot
returned to the upward-pointing attitude, indicating the proper
realization of the effect of the task-space proxy spring.

VII. CONCLUSIONS

This paper has proposed a task-space version of a torque-
bounded admittance controller (TBAC) that tolerates singular
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Fig. 11. Experiment V. (a) Snapshots. (b) End-effector position in z direction
and the singular values of CTJ. (The vertical lines in the graphs correspond
to the snapshots.

configurations and can be used with redundant manipulators.
It imposes an explicit torque limit to each joint without
causing undesirable or unsafe side effects, while it enforces the
end-effector to follow predefined task-space proxy dynamics
as long as the joint torques are unsaturated and the robot
is out of the singular configurations. The behavior of the
robot in the nullspace is determined by predefined joint-
space proxy dynamics. The task- and joint-space proxy dy-
namics are combined through a newly proposed continualized
pseudoinverse, which is an alternative approximation of the
pseudoinverse matrix. The controller was validated through
experiments with a seven-degree-of-freedom (DOF) Kinova
Gen3 robot. The results illustrate that the proposed controller
acts as a proper task-space admittance controller that safely
handles actuator force saturation and singular configurations,
and also as a contact force controller and a trajectory-tracking
controller. It was also shown that the proposed method with
the continualized pseudoinverse realizes higher accuracy in
trajectory tracking than the case with a damped pseudoinverse.

An important open problem is to establish appropriate
guidelines for parameter tuning. In particular, deeper theo-
retical and empirical studies would be needed to clarify the
effect of the threshold ε for the continualized pseudoinverse.
In addition, it is important to analyze the combined task-
space and joint-space dynamics in more detail. The analysis in
this paper assumed that the joint-space inertia, viscosity, and
stiffness matrices are scalar multiples of each other, but this
assumption should be reconsidered or preferably removed. A
more in-depth analysis under conditions of torque saturation
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and time-varying references should also be conducted.

APPENDIX A
QUATERNION CALCULUS

The attitude of a rigid body in the Cartesian space can be
represented by a 3×3 rotation matrix (∈ SO(3)) whose column
vectors represent the axes of the body-fixed frame. A unit
quaternion can also represent the attitude of a rigid body. A
unit quaternion a = [aw, ax, ay, az]

T ∈ H to its correspondent
3× 3 rotation matrix can be associated by the following map:

q2m(a) ≜ a2
w + a2

x − a2
y − a2

z 2(axay − awaz) 2(axaz + away)
2(axay + awaz) a2

w − a2
x + a2

y − a2
z 2(ayaz − awax)

2(axaz − away) 2(ayaz + awax) a2
w − a2

x − a2
y + a2

z

.
We define the time derivative operator ◦ for a unit quaternion
a = [aw, ax, ay, az]

T as follows:

◦
a ≜ 2

 −ax aw −az ay
−ay az aw −ax
−az −ay ax aw




ȧw
ȧx
ȧy
ȧz

 . (97)

Note that a ∈ H and ◦
a ∈ R3. With this operator, the angular

velocity ω ∈ R3 and the attitude a ∈ H of a rigid body can
be associated as ω =

◦
a.

Now we prepare some operators to relate the discrete-
time representations of the attitude quaternions and the an-
gular velocity vectors. First, the quaternion multiplication
⊗ : H×H → H is defined as follows:

aw
ax
ay
az

⊗

bw
bx
by
bz

≜


awbw − axbx − ayby − azbz
axbw + awbx − azby + aybz
aybw + azbx + awby − axbz
azbw − aybx + axby + awbz

 .

Based on this, let the operators ⊖ : H × H → R3 and ⊕ :
H× R3 → H be defined as follows:3

a⊖ b ≜ q2v (a⊗ inv(b)) (98)
a⊕ r ≜ v2q(r)⊗ a (99)

where inv : H → H, q2v : H → R3, and v2q : R3 → H are
defined as follows:

inv

([
aw
axyz

])
≜

[
aw

−axyz

]
(100)

q2v

([
aw
axyz

])
≜ 2 sgn(aw)

sinc (asin(∥axyz∥))
axyz (101)

v2q (r) ≜
[

cos(∥r∥/2)
r sinc(∥r∥/2)/2

]
. (102)

The functions q2v and v2q are to associate a unit quaternion
to its correspondent rotation vector. With a ∈ H, b ∈ H, and
r ∈ R3, the operators ⊖ and ⊕ satisfy the following relation:

a⊖ b = r ⇐⇒ a = b⊕ r if ∥r∥ < π, (103)

3The definitions of these notations are equivalent to those in [37], but
different from those in [38]. In our definitions, the attitude a ⊕ r is the
attitude a rotated by r seen from the world frame, but in [38], it is by r seen
from the body frame. Similar notations are also found in [39], [40].

which can be shown through tedious but straightforward
derivations.

With the operator ⊖, the following relation holds true:

lim
T→0

(a+ T ȧ)⊖ a

T
=

◦
a. (104)

From (104), the backward Euler discretization of the relation
ω =

◦
a between the attitude a ∈ H and the angular velocity

ω ∈ R3 can be given as follows:

ω = (a⊖ aprv)/T, a = aprv ⊕ Tω (105)

where T is the timestep size and aprv is the value of a
in the previous timestep. The expression (105) is particu-
larly convenient due to its representational similarity to the
backward-Euler discretization of vector quantities in ordinary
vector spaces, such as translational positions or velocities.
Moreover, these operators can be implemented by overloading
the operators ‘−’ and ‘+’ in the C++ language. It should
be noted, however, that the operator ‘⊕’ is not commutative,
unlike its counterpart ‘+’ in ordinary vector spaces.

In order to deal with the position and the attitude of a rigid
body in brief expressions, we define the set P ≜ R3 ×H and
redefine the operators ⊖ : P× P → R6 and ⊕ : P× R6 → P
as follows: [

r1
a1

]
⊖

[
r2
a2

]
≜

[
r1 − r2
a1 ⊖ a2

]
(106)[

r1
a1

]
⊕

[
r2
r3

]
≜

[
r1 + r2
a1 ⊕ r3

]
(107)

where r∗ ∈ R3 and a∗ ∈ H. Note that P can be seen as
an alternative representation of SE(3). The operators ‘⊖’ and
‘⊕’ defined with P and R6 allow concise representations of the
Euler discretizations of translational and rotational equations
of motion. In addition, we define the time derivative operator
‘◦’ for p = [rT ,aT ]T ∈ P as follows:

◦
p ≜ [ṙT ,

◦
aT ]T ∈ R6. (108)

It should be emphasized that p ∈ P and ◦
p ∈ R6.

Now let us consider an n-DOF rigid-link manipulator with
a single end-effector. Let q ∈ Rn be the joint variable vector
of the manipulator, and p ∈ P be the position and the attitude
of the end-effector. Let u ∈ Rn be the joint velocity vector
defined as u = q̇ and v ∈ R6 be the vector of the translational
velocity and the angular velocity of the end-effector, which
satisfies v =

◦
p. With the forward kinematics Φ : Rn → P

of the manipulator, we have p = Φ(q). We can define the
Jacobian of Φ based on the operator ⊖, which is defined as
the function J : Rn → R6×n satisfying the following:

J(q)u = lim
T→0

Φ(q + Tu)⊖Φ(q)

T
∀u ∈ Rn. (109)

With such a function J , we can relate the velocities v ∈ Rn

and u ∈ R6 by v = J(q)u. Moreover, with the backward
Euler discretization u = (q − qprv)/T , we have

(Φ(q)⊖Φ(qprv))/T ≈ J(qprv)u (110)
Φ(q) ≈ Φ(qprv)⊕ TJ(qprv)u (111)

if T > 0 is small enough.
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APPENDIX B
PROOFS OF PROPOSITIONS IN SECTION II-B

In order to provide a proof of Theorem 1, we here introduce
the following lemma:

Lemma 1. The following statement holds true:

arglexmin
ξ∈Rn

{∥Σξ − β∥2, ∥ξ∥2} = Σ+β (112)

where Σ ∈ Rm×n is a rectangular diagonal matrix with non-
negative diagonal elements and β ∈ Rm is a vector.

Proof: Because of the property of Σ, we have the
following:

∥Σξ − β∥2 =

min(m,n)∑
i=1

(σiξi − βi)
2 (113)

where σi is the i-th diagonal element of Σ and ξi and βi are
the i-th elements of β and ξ, respectively. Let I ≜ {i ∈
{1, · · · ,min(m,n)} |σi > 0}. Then, ∥Σξ − β∥2 takes its
minimum

∑
i ̸∈I β2

i if ξi = βi/σi for all i ∈ I . The other
elements, ξi with i ̸∈ I , should be zero to minimize ∥ξ∥.
Therefore, the left-hand side of (112) is ξ whose elements
are:

ξi =

{
βi/σi if i ∈ I
0 otherwise, (114)

which is equivalent to Σ+β.
Based on this Lemma 1, we can prove Theorem 1 as

follows:
Proof of Theorem 1: It is known that A can be decom-

posed into the form of A = UΣV T where U ∈ Rm×m

and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n

is a rectangular diagonal matrix with non-negative diagonal
elements. Therefore, the left-hand side (lhs) and the right-hand
side (rhs) of (10) can be connected as follows:

lhs of (10) = arglexmin
x∈Rn

{∥UΣV Tx− b∥2, ∥x∥2}

= V arglexmin
V Tx∈Rn

{∥ΣV Tx−UT b∥2, ∥V Tx∥2}

= V Σ+(UT b) = A+b = rhs of (10). (115)

Here we used Lemma 1 by substituting β = UT b and ξ =
V TA, and also used the fact that ∥Ux∥ = ∥x∥ is satisfied
for an arbitrary orthogonal matrix U .

Likewise, a proof of Corollary 1 can be given as follows:
Proof of Corollary 1: The left- and right-hand sides of

(11) can be connected as follows:

lhs of (11)
= arglexmin

C−1(ξ+d)∈Rn

{∥AC−1(ξ + d)− b∥2, ∥ξ∥2}

= C−1 arglexmin
ξ∈Rn

{∥AC−1ξ − (b−AC−1d)∥2, ∥ξ∥2}

+C−1d

= C−1(AC−1)+(b−AC−1d) +C−1d

= rhs of (11). (116)

In the first line, we used x = C−1(ξ+d) where ξ = Cx−d.
The equivalence between the second line and the third line is
from Theorem 1.

APPENDIX C
DIFFERENTIATION OF J#

This appendix section derives d(J#)/dt in a similar manner
to [41]. As mentioned in the Lemma of [41], if a matrix E
satisfies EE = E, it satisfies EĖE = O, which can be easily
shown by noting EĖ = E(EĖ + ĖE) = EĖ + EĖE.
Because JJ# and J#J satisfy this condition, they satisfy
the following:

J#J
(
d(J#J)/dt

)
J#J = On×n (117)

JJ#
(
d(JJ#)/dt

)
JJ# = O6×6, (118)

which leads to

J#JM−1
(
d(JTJ#T )/dt

)
MJ#J = On×n (119)

JJ#M−1
T

(
d(J#TJT )/dt

)
MTJJ

# = O6×6. (120)

Let Z ≜ dJ#/dt. Then, the above leads to

M−1JTZTMJ#=−M−1JTJ#THTJ#TMJ# (121)
J#M−1

T ZTJTMT=−J#M−1
T J#THTJ#TJTMT. (122)

Differentiating (51a), (51d), and (51c) yields the following:

Z = J#HJ# +ZJJ# + J#JZ (123)
ZJ + J#H = M−1(JTZT +HTJ#T )M (124)
JZ +HJ# = M−1

T (ZTJT + J#THT )MT. (125)

Substituting (124) and (125) into (123) leads to the following:

Z = −J#HJ# +M−1(JTZT +HTJ#T )MJ#

+J#M−1
T (ZTJT + J#THT )MT. (126)

By substituting (121) and (122) into (126), one obtains the
following:

dJ#

dt
= −J#HJ# + (I − J#J)M−1HTJ#TMJ#

+J#M−1
T J#THTMT(I − JJ#), (127)

which also leads to the following:

dJ#J

dt
= J#H(In − J#J)

+(In − J#J)M−1HTJ#TM . (128)
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