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Torque-Bounded Task-Space Admittance Control
for Redundant Manipulators

Ryo Kikuuwe

Abstract—This paper presents a task-space admittance con-
troller applicable to redundant manipulators equipped with
torque sensors. It extends Kikuuwe’s (2019) torque-bounded
admittance controller (TBAC), which allows for imposing explicit
limits on the joint actuator torques without causing unsafe
behaviors such as oscillation and overshoots. The proposed
controller enforces the end-effector to follow predefined task-
space dynamics as long as the joint torques are unsaturated and
the configuration is away from singularities. The behavior in the
nullspace, which arises from the redundant degrees of freedom
and singular configurations, is governed by predefined joint-space
dynamics. The task-space and joint-space dynamics are combined
through the use of a continualized pseudoinverse employing the
singular value decomposition. Results of experiments using a
seven-degree-of-freedom Kinova Gen3 robot illustrate the validity
of the proposed admittance controller in various scenarios,
including the case where the robot is fully stretched.

Index Terms—Admittance Control, Null-space, Redundancy,
Singular Configuration

I. INTRODUCTION

Admittance control is a control technique to regulate robots’
reactions to external forces. It is one form of impedance
control and is often referred to as position-based impedance
control. A typical implementation of admittance control is
illustrated in Fig. 1(a). The admittance controller is composed
of an internal position controller and a virtual object referred
to as a ‘proxy,’ which simulates simple dynamics such as a
spring-mass-damper system. The proxy position qx is adjusted
based on the force τs measured by a force sensor or a
torque sensor and a reference force τr given from a higher-
level controller. The proxy position qx acts as the target for
the robot’s internal position controller, which enforces the
robot’s actual position qs to track the proxy position qx. This
controller structure is suitable for robots with complicated
dynamics because its internal position controller suppresses
the influence of the hardware dynamics such as inertia and
joint friction. Its applications include haptic interfaces [1], [2],
manual guidance of industrial manipulators [3], human-robot
collaboration [4], [5], assembly [6], robotic orthoses [7], [8]
and surgical robots [9].

One concern of the admittance control structure is that it is
not straightforward to impose explicit limits on the actuator
torques. This is because the torque limits imposed on the in-
ternal position controllers can lead to a separation between the
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Fig. 1. Systems controlled with admittance controllers. (a) Typical imple-
mentation. (b) Torque-Bounded Admittance Control (TBAC) [10].

proxy position qx and the actual position qs, which may result
in undesirable snapping-back and overshooting behaviors of
the robot. This property poses significant inconvenience in
ensuring the safety of admittance-controlled robots in practical
applications, especially those involving physical contact with
humans.

Another set of technical challenges arises when admittance
control should be performed in the task space, i.e., the Carte-
sian space of the end-effector position and attitude. Such con-
trollers would be needed in, e.g., human-robot collaboration
and assembly tasks. In human-robot collaboration, the robot
would need to move its end-effector in the direction in which
it is pushed or twisted by the human. In assembly tasks,
the contact force and compliance should be appropriately
regulated in the task space, irrespective of the robot configura-
tion. In this case, one needs to carefully manage the singular
configurations and the redundant degrees of freedom (DOFs).
When the robot is close to the singular configuration, the proxy
velocity in the task space may be mapped to an excessively
large joint velocity, which results in unsafe behavior of the
robot. The singular configurations have been mainly handled
by avoiding them by additional control algorithms [11], [12],
or by using approximate pseudoinverses of Jacobians [13],
[14]. Such approximations, however, would result in a certain
level of inaccuracy in the task-space motion, as discussed
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in [13], [15]. The redundancy has been treated by injecting
additional damping [16]–[19] and compliance [17], [20], [21]
in the nullspace motion1.

In a previous paper, Kikuuwe [10] proposed a controller
named a torque-bounded admittance control (TBAC), which
incorporates explicit torque limit to the internal position
controller while maintaining the consistency between the
proxy position and the actual position. It acts as a standard
admittance controller as long as the actuator torque is not
saturated, but once it is saturated, the controller yields to
external forces without inducing overshoot or oscillations.
The controller incorporates an algebraic loop, as illustrated
in Fig. 1(b), which algebraically constrains the proxy position
and the actuator torque. The entire controller is formulated
as a differential algebraic inclusion (DAI), with a discrete-
time implementation derived through the implicit (backward)
Euler discretization. This method was originally designed as
a one-dimensional controller and thus can be implemented
independently in each joint. That is, it is usable only in the
joint space.

This paper presents a task-space extension of TBAC that tol-
erates singular configurations and can be used with redundant
manipulators. It imposes explicit torque limits to each joint
without impairing the safety, while it enforces the end-effector
to follow predefined task-space proxy dynamics as long as
the joint torques are unsaturated and the robot is out of the
singularity configurations. The dynamics of the robot in the
nullspace is determined by predetermined joint-space proxy
dynamics. The task- and joint-space dynamics are combined as
a lexicographic minimization problem, and its computational
implementation is realized with an alternative approximation
of the pseudoinverse, which is named a continualized pseu-
doinverse. The continualized pseudoinverse is equal to the
original pseudoinverse as long as the singular value is zero
or larger than a predetermined threshold, but it is continuous
even when it has small singular values. The controller was
validated with experiments using a seven-DOF Kinova Gen3
robot, in which the controller is shown to tolerate singular
configurations, such as those where the manipulator is fully
stretched.

One feature of the proposed controller is its incorporation
of full admittance (inertia, viscosity, and stiffness) in both
the task space and the joint space, unlike the methods in
[16], [18], [19], [21]. Another feature is that it realizes the
nullspace admittance control without explicitly computing the
nullspace basis or the nullspace velocities, in contrast to the
approach in [17], [19], [22]. It may also be an important point
that the proposed controller employs a concise representation
of the task-space rotational dynamics based on quaternions
and quaternion derivatives, which are similar to but simpler
than those in [23], [24]. In addition to the above features, the
proposed controller inherits the main feature of TBAC, which
is the safety under the actuator torque saturation.

This paper is organized as follows. Section II shows
some mathematical preliminaries. Section III provides an

1This paper uses the term ‘nullspace’ to mean the set of joint-space
velocities that do not affect the end-effector velocity.

overview and reinterpretation of the previously-proposed one-
dimensional TBAC [10]. Section IV proposes a new admit-
tance controller. Section V provides some theoretical analyses.
Section VI shows the results of experiments employing a
seven-DOF manipulator. Section VII provides some conclud-
ing remarks.

II. MATHEMATICAL PRELIMINARIES

A. Notations

In this paper, R denotes the set of all real numbers, and
H denotes the set of all unit quaternions. This paper treats
a quaternion as a four-dimensional vector, which means that
H ⊂ R4. We also use P = R3 × H ⊂ R7, which is used to
express the position and the attitude of the end-effector by a
7-dimensional single vector. We use the addition operator ⊕,
the subtraction operator ⊖, and the time-derivative operator ◦
for P, which are defined in Appendix A.

This paper uses the following function:

projC(x) ≜ argmin
ξ∈C

∥ξ − x∥ (1)

where C ⊂ Rn is a convex set. The function projC can be
said to be a projection operator onto the set C. This paper
also uses the notation coC to denote the convex hull of a
set C. With two scalars A and B, co{A,B} = co{B,A} =
[min(A,B),max(A,B)].

We also use the function sat1 : Rn × Rn → Rn and the
function sat3 : R2×R6 → R6, which are respectively defined
as follows:

sat1(F ,x) ≜

 F1x1/max(F1, |x1|)
...

Fnxn/max(Fn, |xn|)

 (2)

sat3(F ,x) ≜
[

F1x1:3/max(F1, ∥x1:3∥)
F2x4:6/max(F2, ∥x4:6∥)

]
(3)

where xi stands for the i-th element of x and xi:j stands for
the (j− i+1)-dimensional vector composed of the i-th to j-th
elements of x.

Derivations in Section III-B utilize a normal-cone function
[10], which is the set-valued function defined as follows:

N[A,B](x) =


∅ if x > B ∧ x < A
[0,∞) if x = B ̸= A
0 if x ∈ (A,B)
(−∞, 0] if x = A ̸= B
(−∞,∞) if x = A = B

(4)

where A < B. The following relation exists between the
normal cone and the projection [25, Section A.3]:

x+N[A,B](x) ∋ y ⇐⇒ x = proj[A,B](y). (5)

Here, addition and subtraction between a set B ⊂ R and a
single value x ∈ R should be understood as

B ± x =
∪
η∈B

(η ± x). (6)

This implies that, if B = [A,B] ⊂ R, B+x = [A+x,B+x].



3

This paper uses the ‘argument of the lexicographic mini-
mum’ operator, which should be read as follows:

arglexmin
x∈C

{f(x), g(x)} = argmin
x∈ argminx∈C f(x)

g(x). (7)

Here, argminx∈C f(x) is the set of the arguments of the
minimum of f(x), which can be set-valued. The return value
of the arglexmin operator can also be set-valued, but this paper
only deals with cases where it is single-valued.

With a symmetric positive semidefinite matrix A, we use
Ah to mean one of square matrices that satisfy A = AhAhT

where AhT = (Ah)T . A matrix Ah can be the principal (sym-
metric) square root matrix A1/2 if all elements of A have the
same physical dimensions. We use Ah to preserve the physical
consistency because A comprising elements with different
physical dimensions may result in A1/2 whose non-diagonal
elements do not have consistent physical dimensions. If A−1

exists, one has A−1 = A−hTA−h where A−hT = (AhT )−1

and A−h = (Ah)−1. With such a matrix Ah, the following
relation holds:

∥x∥A =
√
xTAx = ∥AhTx∥, (8)

which means that a weighted vector norm can be rewritten as
an unweighted norm using AhT .

B. Pseudoinverse and Lexicographic Minimization

Recall that, for a matrix A ∈ Rm×n, there always exists a
matrix A+ ∈ Rn×m that satisfies the following conditions:

AA+A = A, A+AA+ = A+,

(AA+)T = AA+, (A+A)T = A+A. (9)

The matrix A+ is referred to as the pseudoinverse of A.
This paper uses the following fact:

Theorem 1. With A ∈ Rm×n and b ∈ Rm, the following
statement holds true:

arglexmin
x∈Rn

{∥Ax− b∥2, ∥x∥2} = A+b. (10)

The proof is given in Appendix B. The author does not
consider it a new result, but the expression (10), in its concise
form, cannot be found in the literature as far as the author is
aware.

As an extension of Theorem 1, we have the following:

Corollary 1. The following statement holds true:

arglexmin
x∈Rn

{∥Ax− b∥2, ∥Cx− d∥2}

= C−1Ā+b+C−1(In − Ā+Ā)d (11)

where Ā ≜ AC−1 ∈ Rm×n, A ∈ Rm×n, b ∈ Rm, d ∈ Rn,
and C ∈ Rn×n is a regular matrix.

Its proof is also given in Appendix B.

III. OVERVIEW AND REINTERPRETATION OF TBAC
In a previuos paper, Kikuuwe [10] proposed a controller

referred to as a torque-bounded admittance control (TBAC).
The controller in [10] is a one-dimensional controller and
was validated only through joint-space experiments, where the
controller was implemented independently to each joint of a
robot. This section provides a quick overview of TBAC from
a somewhat different perspective.

A. Conventional Admittance Control
Here we consider a one-DOF robot with a single actuated

joint equipped with a joint position (angle) sensor and a
force (torque) sensor. Let qs denote the measured position, τm
denote the commanded actuator force, and τs be the measured
external force.

A typical and conventional idea of admittance control is
that the robot should be position-controlled to follow a virtual
object, hereinafter referred to as a proxy, such as those
illustrated in Fig. 2. The proxy in Fig. 2 is an inerter-damper-
spring2 system connected to a reference position qr and subject
to the measured force τs and a reference force τr. When the
robot is in contact with an environment surface, the force from
the environment to the robot is measured as the force τs, and
it is used as a force acting on the proxy. When the robot
is statically in contact with the environment, the proxy is in
equilibrium, and τs+ τr = K(qx− qr) holds true. This means
that −τr can be interpreted as the desired value of τs if the
spring constant K is set to be zero.

The equation of motion of the proxy illustrated in Fig. 2
can be given as follows:

M(q̈x − αr) +B(q̇x − ur) +K(qx − qr) = τs + τr (12)

where αr ≜ u̇r and ur ≜ q̇r. Here, M > 0 is the inertia of
the inerter, B > 0 is the viscosity of the damper, and K > 0
is the stiffness of the spring. The proxy position qx ∈ R and
velocity q̇x are updated according to (12), and the position
qx is used as the command position to the position controller,
which can be typically written as follows:

τm = Kc(qx − qs) +Bc(q̇x − q̇s) + Lc

∫
(qx − qs)dt. (13)

Here, Kc, Bc, and Lc are the proportional, derivative, and
integral gains. A typical algorithmic structure of an admittance
controller can be illustrated in Fig. 3(a). Here, T is the
sampling interval and the subscript prv indicates the value
of the associated variable in the previous timestep. Based on
the Euler discretization, we have qx = qx,prv + Tux where
ux ≜ q̇x. In the structure of Fig. 3(a), the proxy position qx
is sent to the position controller. The proxy position qx and
velocity ux are reused in the next timestep to update them to
new values.

B. Basic Version of TBAC
Let us consider the case where we need to impose the

constraint τm ∈ [ − Fc, Fc] on the actuator torque τm where

2An inerter is a mechanical element that produces the force proportional
to the acceleration difference between its two ends, such as those appearing
in [26].
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Fc > 0. The TBAC [10] is a controller to deal with such a
case, and it is described as follows:

M(q̈x − αr) +B(q̇x − ur) +K(qx − qr)

∈ τs + τr −N[−Fc,Fc](τm) (14a)

τm = Kc(qx − qs) +Bc(q̇x − q̇s) + Lc

∫
(qx − qs)dt. (14b)

This set of equations can be seen as a differential-algebraic
inclusion (DAI) with respect to qx. Because the normal-cone
term +N[−Fc,Fc](τm) in (14a) forbids τ larger than Fc, the
proxy’s acceleration q̈x is determined so that |τ | ≤ Fc is
satisfied. As long as |τ | < Fc, the controller (14) is equivalent
to the ordinary admittance controller described by (12) and
(13). The structure of TBAC (14) is shown in Fig. 1(b), in
which the term N[−Fc,Fc](τm) in (14a) appears as an algebraic
feedback loop.

The discrete-time representation of the controller (14) can

be obtained by its implicit Euler discretization, which can be
obtained by replacing the derivatives by the finite differences,
e.g., u̇x := (ux − ux,prv)/T . Through some derivations
detailed in [10], which include the use of (5) to treat the set-
valuedness, the discrete-time algorithm for solving (14) can
be given as follows:

τ̂s := τs + τr +Mαr +Bur +K(qr − qx,prv) (15a)

q∗x :=
Mux,prv + T τ̂s
M +BT +KT 2

(15b)

{τm, qx} := SatPosCtrl(q∗x, qx,prv, qs, us, bxs,prv) (15c)
ux = (qx − qx,prv)/T (15d)
bxs := bxs,prv + T (qx − qs) (15e)

where the function SatPosCtrl, which is a ‘saturated position
controller,’ is defined as follows:

Function SatPosCtrl(q∗x, qx,prv, qs, us, bxs,prv) (16a)
τ∗∗m := Lcbxs,prv −Bc(us − (q∗x − qx,prv)/T ) (16b)
τ∗m := (Kc + LcT )(q

∗
x − qs) + τ∗∗m (16c)

τm := proj[−Fc,Fc] (τ
∗
m) (16d)

qx := qs +
τm − τ∗∗m

Bc/T +Kc + LcT
(16e)

Return {τm, qx}. (16f)

Note that this algorithm (15) does not involve any set-valued
functions or non-closed-form equations, in spite of the fact
that its original continuous-time representation (14) involves
set-valuedness and differential-algebraic constraints.

The structure of the algorithm (15) can be illustrated as in
Fig. 3(b). It can be interpreted as a combination of the proxy
dynamics, represented by (15a) and (15b), and a saturated
position controller, represented by the function SatPosCtrl de-
fined in (16). The quantity q∗x calculated by (15b) can be seen
as a ‘tentative’ proxy position without considering the actuator
saturation. This is provided to the function SatPosCtrl, which
provides the necessary torque τm and a ‘corrected’ proxy
position qx, which corresponds to the maximal permissible
velocity under the torque limitation. If the actuator is not
saturated, the tentative proxy position q∗x is just adopted as
the proxy velocity qx. The corrected proxy position qx is used
in the next timestep.

C. Velocity-Projected Version of TBAC

The previous paper [10] pointed out a flaw of the algorithm
(15), which is that the actuator saturation may inject kinetic
energy into the robot. When the robot is accelerated by an
external force and the actuator torque is saturated, the proxy
velocity ux is also increased, and it affects the proxy position
qx in the next timestep. This means that, when the actuator is
saturated, the work done by the external force is stored as the
kinetic energy of the proxy, as well as that of the robot. This
feature is undesirable for safety reasons.

To eliminate this flaw, the paper [10] has proposed a velocity
projection method, which is referred to as a ‘Modification B’
in [10, Section V.B]. It modifies ux so that it satisfies ux ∈
co{0, u∗

x}, which indicates that the saturation only shrinks the
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proxy velocity u∗
x without altering its direction. This idea can

be realized by adding the line

ux := projco{0,u∗
x}(ux) (17)

in the end of the algorithm (15). The modified controller
(15)+(17), which can be said to be a ‘velocity-projected
version’ of TBAC, is illustrated in Fig. 3(c). It should be
emphasized that this modification does not alter the current
proxy position qx, but does modify only the proxy velocity
ux, which influences the proxy position in the next timestep.
The underlying idea is that the proxy velocity, which is a state
variable independent from the proxy position, does not need
to satisfy ux = (qx − qx,prv)/T , although the proxy position
qx needs to be consistent with the torque τm.

IV. PROPOSED CONTROLLER

This section proposes a multi-dimensional extension of
TBAC applicable to redundant manipulators. The overall struc-
ture of the controller is illustrated in Fig. 4. The desired
dynamics of the robot are defined by two proxies: the task-
space proxy and the joint-space proxy. The block SatPosCtrl
in Fig. 4 is an element-wise, multidimensional version of the
one defined in (16), which acts on each joint independently.
We assume that the robot is equipped with torque sensors
attached to the joints.

A. Structure

We here consider an n-DOF rigid-link manipulator with a
single end-effector. We use q ∈ Rn, u ∈ Rn, and α ∈ Rn

to denote the joint-space position, velocity, and acceleration
vectors, respectively, and they satisfy u = q̇ and α = u̇. We
also use p ∈ P, v ∈ R6, and a ∈ R6 to denote the task-
space position, velocity, and acceleration vectors, respectively.
It should be noted that p ∈ P is a seven-dimensional vector
composed of the three-dimensional position-vector part and
the four-dimensional attitude-quaternion part. Each of the vec-
tors v ∈ R6 and a ∈ R6 is composed of a three-dimensional
translational part and a three-dimensional rotational part. They
are associated as v =

◦
p and a = v̇ where ◦ is the

time-derivative operator defined in Appendix A. We also use
τ ∈ Rn and f ∈ R6 to denote a joint torque vector and a
task-space force vector, respectively. With these symbols, the
subscripts s, x, and r denote the measured values, the proxy
values, and the reference values, respectively.

With the forward kinematics Φ : Rn → P of the manip-
ulator, we have p = Φ(q), and using the Jacobian matrix
J : Rn → R6, we have v = J(q)u. We also use the
Jacobian rate-of-change matrix H : Rn × Rn → R6 defined
as H(q, q̇) ≜ dJ(q)/dt, which satisfies v̇ = J(q)u̇ +
H(q,u)u.

As can be seen in Fig. 4, we assume that the manipulator
is equipped with joint angle sensors and joint torque sensors,
which provide the measured angle vector qs ∈ Rn and the
measured torque vector τs ∈ Rn, respectively. The proposed
controller involves two different proxies, which are the task-
space proxy and the joint-space proxy. They are governed by
certain dynamics coupled with a lexicographic prioritization,
indicated as ‘lexmin’ in the figure. The positions and the
velocities of the joint-space proxy and the task-space proxy
are kept consistent with each other through the relations
px = Φ(qx) and vx = J(qx)ux at every timestep. The output
of the controller is the command torque τm ∈ R6 sent to the
joint actuators.

Recall that the one-dimensional velocity-projected version
of TBAC is written as (15)+(17). As its direct extension, the
algorithm of the proposed controller is given as follows:

q∗
x := TwoProxies(px,prv,vx,prv, qx,prv,ux,prv, τs) (18a)

{τm, qx} := SatPosCtrl(q∗
x, qx,prv, qs,us, bxs,prv) (18b)

ux := (qx − qx,prv)/T (18c)
bxs := bxs,prv + T (qx − qs) (18d)
ux := projco{0n,u∗

x}(ux) (18e)
px := Φ(qx) (18f)
vx := J(qx)ux. (18g)

Here, the function TwoProxies represents the combined proxy
dynamics that will be detailed in the next Section IV-B. It
determines the tentative joint-space proxy velocity u∗

x, and it
is used as the input to SatPosCtrl, the saturated position con-
troller defined in (16), to obtain the joint torque command τm.
As has been detailed in Section III-B, the function SatPosCtrl
provides the corrected proxy velocity ux as another output.
The velocity is then ‘projected’ in (18e), resulting in a re-
corrected velocity ux. This projection operation is discussed
in Section III-C, and its multidimensional version is given as

projco{0n,u∗
x}(ux) ≜ proj[0,1]

(
u∗T
x ux

u∗T
x u∗

x

)
u∗
x. (19)

Finally, the joint-space proxy position qx and velocity ux are
converted into the task-space proxy position px and velocity
vx, respectively, through the forward kinematics.

Note that the lines (18b) to (18e) of the proposed controller
exactly correspond to the lines (15c) to (15e) plus (17) of the
one-dimensional TBAC.
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B. Combined Proxy Dynamics

Now the combined proxy dynamics, which appear as the
function TwoProxies in the line (18a) of the proposed con-
troller (18), is presented. It is composed of the task-space
proxy dynamics and the joint-proxy dynamics. The task-space
proxy dynamics is given in the following continuous-time
representation:

◦
px = vx, v̇x = ax (20a)
MT(ax − ar) +BT(vx − vr) + sat3(FT,KT(px ⊖ pr))

= fs + fr (20b)

where fs and fr ∈ R6 are the force acting on the end-
effector and the reference force, respectively, and ar ≜ v̇r

and vr ≜ ◦
pr. The matrices MT, BT, and KT ∈ R6×6

are the inertia, viscosity, and stiffness matrices, respectively,
and they are symmetric positive-definite matrices. In the third
term of the left-hand side of (20b), the function sat3, defined
in (3), is used to allow for setting upperbounds to the task-
space proxy spring force. Here, FT is a vector composed as
FT = [Ftra, Frot]

T ∈ R2 where Ftra and Frot are the limits
for the translational and rotational components, respectively.

In the dynamics (20), fs is not directly available. It however
can be assumed to satisfy the following relation with the
measured torque τs ∈ Rn:

τs ≈ J(qs)
Tfs. (21)

A discrete-time approximation of (20) can be given as
follows:

px = px,prv ⊕ Tvx, vx = vx,prv + Tax (22a)
MT (ax − ar) +BT(vx,prv + Tax − vr)

+ sat3(FT,KT(px,prv ⊖ pr)) = fs + fr. (22b)

One can rewrite (22b) as follows:

ĈTax − b̂T − fs = 06 (23)

where

ĈT ≜ MT + TBT (24)
b̂T ≜ −BTvx,prv + fr + fre (25)
fre ≜ MTar +BTvr + sat3(FT,KT(pr ⊖ px,prv)). (26)

The expression (23) can be seen as an algebraic problem
with respect to the task-space acceleration ax ∈ R6, but
to incorporate it into the framework of Fig. 4, it should be
reformulated as a problem with respect to the joint-space
acceleration αx ∈ Rn. Moreover, because the robot is assumed
to have torque sensors, we need to replace fs by τs through
the relation (21). Note that ax and αx are related by

ax=J(qx,prv)αx+H(qx,prv,ux,prv)(ux,prv+Tαx). (27)

Here, H(q,u) is the Jacobian rate-of-change, i.e., H(q, q̇) ≜
dJ(q)/dt, which can be computed by conventional methods
such as [27, Sec. 5.5] and [28]. Therefore, by substituting (27)
into (23) and left-multiplying its both sides by J(qs)

T , one
can obtain the following:

J(qs)
T ĈT(J(qx,prv) + TH(qx,prv,ux,prv))αx

−J(qs)
T
(
b̂T−ĈTH(qx,prv,ux,prv)ux,prv

)
−τs = 0n. (28)

The solution to this problem is αx, which is consistent with
the task-space proxy dynamics (20).

Meanwhile, the joint-space proxy dynamics is given in the
following continuous-time representation:

q̇x = ux, u̇x = αx (29a)
M(αx −αr) +B(ux − ur) + sat1(F ,K(qx − qr)) = τs

(29b)

where the matrices M , B, and K ∈ Rn×n are the inertia,
viscosity, and stiffness matrices, respectively, for the joint-
space proxy dynamics, and ur ≜ q̇r and αr ≜ u̇r. They
are diagonal positive-definite matrices. In the third term of the
left-hand side of (29b), the function sat1 is the one defined in
(2), and F ∈ Rn is the vector of the limits for the forces of
the joint-space proxy springs. A discrete-time approximation
of (29) can be given as follows:

qx = qx,prv + Tux, ux = ux,prv + Tαx (30a)
M (αx −αr) +B(ux,prv + Tαx − ur)

+ sat1(F ,K(qx,prv − qr)) = τs. (30b)

One can rewrite (30b) as follows:

ĈJαx − b̂J − τs = 0n (31)

where

ĈJ ≜ M + TB (32)
b̂J ≜ −Bux,prv + τre (33)
τre ≜ Mαr +Bur + sat1(F ,K(qr − qx,prv)). (34)

The problem (31) can be seen as a problem with respect to αx

that is consistent with the joint-space proxy dynamics (29).
The task-space proxy dynamics (28) and the joint-space

proxy dynamics (31) are combined in the following manner:

α∗
x = arglexmin

αx∈R6

{∥(28)’s lhs∥M−1 , ∥(31)’s lhs∥M−1} (35)

where ‘lhs’ stands for the left-hand side. The expression (35)
means that the task-space proxy dynamics (28) is prioritized
over the joint-space proxy dynamics (31), and that the joint-
space proxy dynamics is used only in the nullspace. The
use of the weight matrix M−1 in (35) is for the asymptotic
stability of the combined dynamics, which will be discussed
in Section V-A. By using Corollary 1, an algorithm to solve
the problem (35) can be given as follows:

Function TwoProxies(px,prv,vx,prv, qx,prv,ux,prv, τs)(36a)
Js := J(qs) (36b)
Hx,prv := H(qx,prv,ux,prv) (36c)

Ĵx := J(qx,prv) + THx,prv (36d)

CT := M−hJT
s (MT + TBT)Ĵx (36e)

CJ := M−h(M + TB) (36f)
fre := MTar+BTvr+sat3(FT,KT(pr ⊖ px,prv)) (36g)
τre := Mαr +BJur + sat1(F ,K(qr − qx,prv)) (36h)
bT := M−h

(
JT
s

(
−BTvx,prv
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−(MT + TBT)Hx,prvux,prv+fr+fre

)
+ τs

)
(36i)

bJ := M−h(−Bux,prv + τre + τs) (36j)
CTJ := CTC

−1
J (36k)

α∗
x := C−1

J C+
TJbT +C−1

J

(
In −C+

TJCTJ

)
bJ (36l)

u∗
x := ux,prv + Tα∗

x (36m)
q∗
x := qx,prv + Tu∗

x (36n)
Return q∗

x. (36o)

It should be noted that the solution of (35) is α∗
x obtained

by (36l) and that the output of this function is its resultant
proxy position q∗

x. This function is to be used in the first line
of the proposed controller algorithm (18). Recall that M−h

is a matrix satisfying M−1 = M−hTM−h as defined in
Section II-A. Specifically, if M is a diagonal positive-definite
matrix, M−h can be simply chosen as M−h = M−1/2,
which is the diagonal matrix whose diagonal elements are the
reciprocals of the square roots of the diagonal elements of M .

C. Computation of the Pseudoinverse C+
TJ

We now discuss the computation of the pseudoinverse
C+

TJ in the algorithm (36), i.e., the function TwoProxies.
The matrix CTJ is an n × n square matrix, but it is not
invertible because its rank is at most 6 and can be less in the
singular configurations. The matrix CTJ can be decomposed
as CTJ = CsCx where

Cs ≜ M−hJT
s (MT + TBT) ∈ Rn×6 (37)

Cx ≜ Ĵx(M + TB)−1Mh ∈ R6×n. (38)

Therefore, if both Cs and Cx are full-rank, we have C+
TJ =

C+
x C+

s . Thus, C+
TJ can be approximately obtained as follows:

C+
TJ ≈ CT

x (CxC
T
x + ε2xI6)

−1(CT
s Cs + ε2sI6)

−1CT
s . (39)

Here, εx and εs are small positive values to deal with the case
where Jx, Js, or both are rank-deficient. This approximation
can be seen as an application of the damped pseudoinverses
(cf., e.g., [15], [29], [30]). It requires careful choice of the
values of εx and εs, and can cause a certain level of inaccuracy
even when the robot is away from the singular configuration.

An alternative approximate computational method for C+

follows. Recall that the matrix CTJ ∈ Rn×n can be decom-
posed as CTJ = UΣV T where U ∈ Rn×n and V ∈ Rn×n

are orthogonal matrices and Σ ∈ Rn×n is a diagonal ma-
trix whose diagonal elements are the singular values of the
matrix CTJ. The pseudoinverse C+

TJ ∈ Rn×n is obtained as
C+

TJ = V Σ+UT . Here, the matrix Σ+ is the n×n diagonal
matrix whose i-th diagonal element is

σ+
i ≜

{
1/σi if σi ̸= 0
0 if σi = 0

(40)

where σi is the i-th diagonal element of Σ. This definition
injects the discontinuity around σi = 0, and also causes an
excessively large value of σ+

i when σi is non-zero but very
small. One alternative is to replace σ+

i by the following:

σ⊕
i ≜ σi

max(σ2
i , ε

2)
=

{
1/σi if |σi| > ε
σi/ε

2 if |σi| ≤ ε
(41)

where ε > 0 is a parameter appropriately chosen. With this
replacement, one can obtain the matrix C⊕

TJ ≜ UΣ⊕V T

where Σ⊕ is the n × n diagonal matrix with the diagonal
elements defined in (41). Hereafter, we refer to C⊕

TJ as a
continualized pseudoinverse of CTJ.

One advantage of the presented continualized pseudoinverse
C⊕

TJ is that it exactly coincides with the original pseudoinverse
C+

TJ as long as the singular values are either the exact zero
or above the threshold ε. As for CTJ, it has six non-zero
singular values when Jx and Js are full-rank, i.e., when the
robot is not in the singular configurations. Therefore, as long
as its largest six singular values are above the threshold ε,
C⊕

TJ = C+
TJ is satisfied, and thus α∗

x obtained by (36l) is the
accurate solution of the lexicographic minimization problem
(35).

It should be noted that all elements of CTJ are dimen-
sionless quantities, and consequently, the singular values of
CTJ are also dimensionless. This property is not generally
true for arbitrary matrices; a matrix whose elements have
different physical dimensions may have singular values having
no consistent physical dimensions. Because the singular val-
ues of CTJ are dimensionless and physically consistent, the
threshold ε used in (41) can also be understood as a physically
consistent dimensionless quantity. This is not the case with
(39), where neither εs nor εx does not have a consistent
physical dimension.

Although the threshold ε is physically consistent, its choice
still requires careful consideration. The threshold ε determines
whether the task-space or the joint-space admittance is active
in each direction; the joint-space admittance is active in
directions in which the singular value of CTJ is below ε, and
the task-space admittance is active otherwise. If T is small
enough, the matrix CTJ reduces to the following:

CTJ ≈ M−hJT
s MTJxM

−hT . (42)

The matrix JT
s MTJx ∈ Rn×n appearing here can be inter-

preted as the task-space inertia evaluated in the joint space.
Thus, CTJ can be interpreted to represent the ratios of the task-
space inertia JT

s MTJx to the joint-space inertia M evaluated
in the joint space. In fact, in the vicinity of the singular
configuration, the task-space inertia JT

s MTJx becomes lower
in a particular direction in the joint space, which jeopardizes
the stability. In this light, ε should be chosen considering the
lowest permissible task-space inertia in comparison to the
joint-space inertia.

If the joint inertia matrix M is chosen as small as the
stability is maintained, JT

s MTJx ⪰ M is needed to ensure
the stability. From this perspective, a conservative choice for
the threshold ε would be around ε = 1. Unfortunately, some
experimental observations revealed that the setting ε = 1
was overly conservative, disabling the task-space admittance
even when the robot was far from the singular configuration.
Although we currently do not have a definitive guideline for
the choice of ε, we chose ε = 0.03 in our experimental
setup comprising a 7-DOF manipulator, detailed in Section VI,
through some trial and errors.
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V. SOME ANALYSES

A. Stability of Combined Proxy Dynamics

We here analyze the stability properties of the combined
proxy dynamics, which are defined in Section IV-B and
realized by the algorithm (36) in the discrete-time domain.
For simplicity, we restrict the discussion to the case where
vr, ar, ur, αr, and fr are all zeros, i.e., to the case where
the reference positions are constant and the reference force
is zero. We also assume that the position controller is not
saturated and that the position controller is perfectly accurate.
Then, we have Jx = Js. For the notational brevity, we omit
the subscript x within this section. Then, the continuous-time
representation of the combined proxy dynamics realized by
the algorithm (36) can be written as follows:

q̇ = u (43a)
u̇ = arglexmin

α∈Rn

({
∥JTMTJα

+JT (BTJ +MTH)u+ JTϕT(Φ(q)⊖ pr)∥2M−1 ,

∥Mα+Bu+ ϕ(q − qr)∥2M−1

})
. (43b)

where ϕT : R6 → R6 and ϕ : Rn → Rn are functions defined
as follows:

ϕT(∆p) ≜ sat3(FT,KT∆p) (44)
ϕ(∆q) ≜ sat1(F ,K∆q). (45)

Here, note that the state vector of the system is x ≜
[qT ,uT ]

T ∈ R2n. With some tedious but straightforward
derivations using Corollary 1, one can rewrite (43b) in the
following form:

u̇=−J#M−1
T ((BTJ+MTH)u+ϕT(Φ(q)⊖ pr))

−(In−J#J)M−1(Bu+ ϕ(q − qr)) (46)

where

J# ≜ M−hT (MhT
T JM−hT )+MhT

T ∈ Rn×6. (47)

Recall that MT = Mh
TM

hT
T and M−1 = M−hTM−h. The

matrix J# satisfies the following relations:

J#JJ# = J# (48a)
JJ#J = J (48b)
JJ#M−1

T = M−1
T J#TJT = JJ#M−1

T J#TJT (48c)
J#JM−1 = M−1JTJ#T = J#JM−1JTJ#T . (48d)

Note that J# has similar properties to those of the dynamically
consistent Jacobian inverse [31], [32].

Left-multiplying the both sides of (46) by JTMTJ yields
the following:

JTMTJu̇ = −JT ((BTJ+MTH)u+ ϕT(q − pr)). (49)

Here we used (48c) and (48b). Let us define a task-space
energy function as follows:

VT≜ 1

2

(
uTJTMTJu+ΘT(Φ(q)⊖ pr)

)
. (50)

Here, ΘT : R6 → R is a function satisfying

ϕT(∆p) =
∂ΘT(∆p)

∂∆pT
. (51)

Then, from (49), we have

V̇T = −uTJT ((BTJ +MTH)u+ ϕT(Φ(q)⊖ pr))

+(Ju)TϕT(Φ(q)⊖ pr) + uTJTMTHu

= −uTJTBTJu ≤ 0. (52)

The condition V̇T = 0 holds when Ju = 06. From (49), the
invariance set under the condition Ju = 06 can be obtained
as

XT ≜ {[qT ,uT ]T ∈ R2n | q ∈ QT ∧ Ju = 06} (53)

where

QT ≜ {q ∈ Rn |JTϕT(Φ(q)⊖ pr) = 0n}. (54)

Therefore, from LaSalle’s Invariance Principle, the set XT is
positively invariant and asymptotically stable. That is, we have
v ≜ Ju → 06 and JTϕT(Φ(q)⊖ pr) → 0n as t → ∞.

Meanwhile, by using (48) and (49), (46) can be equivalently
rewritten as follows:

u̇ = −(In − J#J)M−1(Bu+ ϕ(q − qr))

+J# (v̇ −Hu) (55)

where we used the fact that v̇ = Ju̇ + Hu. By using (48),
(55) can be equivalently rewritten as follows:

u̇ = −M−1(In − JTJ#T )(Bu+K(q − qr))

+M−1JTJ#TMJ# (v̇ −Hu) . (56)

We also have the following expressions:

(In − JTJ#T )(Mu̇+Bu+ ϕ(q − qr)) = 0n (57)
(In − J#J)(u̇+M−1(Bu+ ϕ(q − qr))) = 0n, (58)

which are directly derived from (56). Let us define a joint-
space energy function as follows:

VJ =
1

2
(uTMu+Θ(q, qr)) (59)

where Θ : Rn × Rn → R is a function satisfying

ϕ(∆q) =
∂Θ(∆q)

∂∆qT
. (60)

Then, its time derivative is given as follows:

V̇J = uT (Mu̇+ ϕ(q − qr))

= −uT (In − JTJ#T )Bu+ uTJTJ#Tϕ(q − qr)

+uTMJ#(v̇ −Hu)

= −uTBu+ vTJ#T
(
Bu+ ϕ(q − qr)

+MJ#(v̇ −Hu)
)
. (61)

This expression implies that V̇J ≤ 0 is satisfied when v = 06,
and V̇J = 0 is satisfied when u = 0n. In addition, (56) implies
that the invariance set under the condition x ∈ XT ∧ u = 0n

can be written as

X J ≜ {[qT ,uT ]T ∈ R2n | q ∈ QJ ∧ u = 0n} (62a)

where

QJ ≜ QT ∩ {q ∈ Rn | (In − JTJ#T )ϕ(q − qr) = 0n}.
(62b)
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Therefore, from LaSalle’s Invariance Principle, as long as
x ∈ XT, the set X J ⊂ XT is asymptotically stable. Because
XT is asymptotically reached by x, one can see that the set
X J ⊂ XT is also asymptotically asymptotically stable with
the combined proxy dynamics (43). This means that the task-
space position p = Φ(q) eventually converges to the position
satisfying JTϕT(p ⊖ pr) = 0n and the nullspace motion
also eventually settles, bringing the entire system into a steady
state.

It should be noted that the set QJ of configurations can
be said to be the set of the equilibrium configurations of
the combined proxy dynamics (43). If pr is set within the
reachable workspace of the robot except for the singular
configurations, i.e., so that there exists q such that pr = Ψ(q)
and rankJ(q) = 6, it reduces to

QJ =
{
q ∈ Rn | Φ(q) = pr ∧
(In − JTJ#T )ϕ(q − qr) = 0n

}
. (63)

Moreover, if qr and pr are set as pr = Ψ(qr) and
rankJ(qr) = 6, the set of equilibrium configurations reduces
to QJ = {qr}. This means that, if pr is set within the
reachable workspace of the robot and qr is set consistent with
pr, the combined proxy dynamics (43) drives q to qr, resulting
in the task-space position satisfying Φ(q) = pr.

Remark 1. It should be noted that, when J is full-rank,
J# in (47) reduces to J# = M−1JT (JM−1JT )−1, which
coincides with the dynamically consistent Jacobian inverse
[31], [32]. The original definition of the dynamically consis-
tent Jacobian inverse J# is chosen so that the following is
satisfied:

∀τ ∈ Rn, JM−1τ = JM−1JTJ#T τ , (64)

which means that J#T maps any torque vector τ to a task-
space force vector f that results in the same task-space
acceleration a as τ results in according to the joint-space
dynamics. The matrix J# defined in (47) satisfies (64) and
also the following:

∀τ ∈ Rn, ∃α ∈ Rn s.t. Jα = M−1
T J#T τ , (65)

which means that J#T maps any torque vector τ to a
task-space force vector f that results in a kinematically-
realizable task-space acceleration a according to the task-
space dynamics. In conclusion, J# in (47) acts as a Jacobian
inverse that is consistent both in the joint-space and the task-
space dynamics.

Remark 2. The discrete-time algorithm (36) involves C+
TJ

instead of J#. Recall that, by setting T small enough, CTJ

can be written as (42). From this, its pseudoinverse can be
given as follows:

C+
TJ = (MhT

T JxM
−hT )+(M−hJT

s Mh
T)

+

= MhTJ#
x M−1

T J#T
s Mh. (66)

This implies that the proposed algorithm (36) implicitly and
approximately involves the matrices J#

x and J#
s . In addition,

the term C+
TJCTJ, which appears in (36l), is related to J#

x

and J#
s by the following:

C+
TJCTJ = MhTJ#

x M−1
T J#T

s JT
s MTJxM

−hT

= MhTJ#
x JsJ

#
s JxM

−hT , (67)

and, by assuming Js ≈ Jx = J , it reduces to

C+
TJCTJ ≈ MhTJ#JM−hT = M−hJTJ#TMh. (68)

This expression allows for the interpretation of (36l) in relation
to the so-called nullspace projector [19], [21], which may be
helpful for further theoretical investigation.

B. Effect of the Weight Matrices

Here we show that the weight matrix M−1 appearing in the
discrete-time representation (35) and the continuous-time one
(43b) is necessary to guarantee the stability of the task-space
dynamics. Let us consider the case where (43b) is replaced by

u̇ = arglexmin
α∈Rn

({
∥JTMTJα

+JT (BTJ +MTH)u+ JTϕT(Φ(q)⊖ pr)∥2XTX ,

∥Mα+Bu+ ϕ(q − qr)∥2Y TY

})
(69)

where X and Y are square matrices. Then, from Corollary 1,
it results in

u̇ = (Y M)−1C+XJT cT + (Y M)−1(I −C+C)Y cJ (70)

where

C ≜ XJTMTJ(Y M)−1 (71)
cT ≜ (BTJ +MTH)u+ ϕT(Φ(q)⊖ pr) (72)
cJ ≜ Bu+ ϕ(q − qr). (73)

Left-multiplying the both sides of (70) by JTMTJ yields the
following:

JTMTJu̇ = −X−1CC+XJT cT. (74)

Note that the obtained (74) is equivalent to (49) only if

X−1CC+XJT = JT (75)

is satisfied, and the satisfaction of (75) is needed to guarantee
the stability of the set XT defined in (53) by satisfying V̇T ≤
0. In order to satisfy (75), one sufficient condition is X =
Y = M−h. This means that the weight matrices need to be
chosen to guarantee the stability of the task-space dynamics,
and XTX = Y TY = M−1 is an appropriate choice.

VI. EXPERIMENTS

A. Experimental Setup.

The proposed method was tested with an experimental setup
shown in Fig. 5, which is a Kinova Gen3 robot. It has seven
joints equipped with torque sensors. The robot was connected
to a PC running Windows OS, and the controllers for the
robots were constructed with Microsoft Visual C++.

The proposed controller, which is the algorithm (18) with
the function TwoProxies in (36) and the function SatPosCtrl
in (16), was implemented with the sampling interval T =
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Fig. 5. Experimental setup (Kinova Gen 3).

0.001 s. The basic settings for the controller parameters were
chosen in the following procedure. First, the torque limits Fc

for the joints were set as 80 % of the maximum torque [33];
Fc = 43.2 Nm for the first four joints and Fc = 27.2 Nm for
the other joints. Second, the proxy dynamics were disabled
(i.e., q∗

x in (18) was kept constant), and the gain values (Kc,
Bc, and Lc) for the function SatPosCtrl were chosen so
that the joint angles were stiffly maintained at q∗

x. Through
some trial and errors, they were chosen as {Kc, Bc, Lc} =
{1500 Nm, 30 Nms, 300 Nm/s} for the first four joints and
{1000 Nm, 20 Nms, 200 Nm/s} for the other joints. Third,
the task-space proxy dynamics was disabled by overwriting
C+

TJ := O7×7 in the function TwoProxies, and the joint-
space proxy parameters were chosen to realize stable joint-
independent admittance control, resulting in:

M = diag [1.2, 1.2, 0.8, 0.8, 0.2, 0.2, 0.2] kg·m2 (76a)
B = (1 s−1)×M (76b)
K = (0.25 s−2)×M , (76c)

which realizes critical damping with the time constant of 2 s.
The force limits for the joint-space proxy springs were set as

F = [30, 30, 30, 30, 20, 20, 20]T Nm. (77)

The reference position for the joint-space proxy was set as
follows:

qr ≡ [0, 0, 0, 0, 0, 0, 0]T rad. (78)

Finally, the task-space proxy parameters were chosen to
realize stable task-space admittance control. Some preliminary
experiments resulted in:

MT = blockdiag [(2 kg)× I3, (0.2 kg·m2)× I3] (79a)
BT = (4 s−1)×MT (79b)
KT = (4 s−2)×MT, (79c)

which realizes critical damping with the time constant of 0.5 s.
The force limit for the task-space proxy spring was set as

FT = [100 N, 10 Nm]T . (80)

Unless otherwise noted, the reference position for the task-
space proxy was set as

pr ≡ [0.5 m, 0 m, 0.4 m, 0, 0, 1, 0]T , (81)

and the reference force was set as fr ≡ 06.

In the function TwoProxies, the pseudoinverse C+
TJ was

replaced by the continualized pseudoinverse C⊕
TJ, detailed in

Section IV-C, where the parameter ε was chosen as ε = 0.03.
It was chosen as small as possible without causing oscillations
when the robot was fully stretched.

The gravity compensation was performed by computing the
gravity torques from the mass parameters of the links provided
in [33]. The computed gravity torques were superposed to the
output τm of the controller (18).

The proposed controller was compared to a variant of the
controller in which the function SatPosCtrl was disabled, to
validate its capability of handling actuator torque saturation.
Controllers depending on the robot’s dynamics model, such as
those in [17], [19], [21], were not included in the empirical
comparison because the performance of such controllers would
depend on the accuracy of the model. Being free from an
explicit dynamics model can count as an advantage of the pro-
posed controller, particularly for robots with highly frictional
joints and complex dynamics.

Comparisons among different approximations of the pseu-
doinverse C+

TJ were not performed either in the experiments.
This is because it would heavily depend on the choice of
parameters of each approximation scheme. This paper does
not argue the superiority of the continualized pseudoinverse
C⊕

TJ although it is a reasonable choice among various possible
approximations as long as the singular value decomposition is
allowed.

B. Experiments IA to ID: Moved by Hand

The first set of experiments was conducted to validate
the task-space admittance control realized by the proposed
method. As an Experiment IA, the experimenter performed
the maneuver shown by the snapshots in Fig. 6(a), which is
divided into the following periods:

• Period A (t ∈ [0 s, 5 s]): The experimenter lightly pushed
the end-effector left and right, in the y direction, by his
palm, without holding it.

• Period B (t ∈ [5 s, 7 s]): The experimenter pulled the
end-effector in the +x direction.

• Period C (t ∈ [7 s, 15 s]): The experimenter released his
hand from the end-effector.

Fig. 6(b) shows the singular values of the matrix CTJ during
the maneuver.

As can be seen in Fig. 6(a), in Period A, the end-effector
moved left and right almost along a straight line without
changing the attitude, although the experimenter did not at-
tempt to hold it at a fixed attitude. It indicates the validity of
the task-space dynamics realized by the proposed controller.
In Period B, the robot came into a singular configuration,
and some singular values became smaller as in Fig. 6(b). It
indicates that the controller tolerates the singular configuration.
In Period C, the robot returned to the original position, which
was the reference position pr, indicating the spring term in
the task-space proxy dynamics (20) worked properly.

Additional trials were performed with different parameter
settings. As an Experiment IB, the rotational components of
{MT,BT,KT} were scaled by 1000 from the values in (79),
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Fig. 6. Experiment IA. (a) Snapshots. (b) End-effector position in x and y
directions and the singular values of CTJ. (The vertical lines in the graphs
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Fig. 7. Snapshots of (a) Experiment IB, (b) Experiment IC, and (c)
Experiment ID.

and the experimenter moved the end-effector randomly around
the initial position. As seen in Fig. 7(a), the end-effector was
moved without changing its attitude, indicating the validity of
the task-space dynamics realized by the proposed controller.

As an Experiment IC, the translational components of
{MT,BT,KT} were scaled by 1000 from the values in
(79), and the experimenter attempted to rotate the end-effector
randomly. As seen in Fig. 7(b), the end-effector changed its
attitude without changing its position. It should be emphasized
that it even passed through the wrist singular configuration, as
can be seen in t = 5.98 s of Fig. 7(b). This behavior indicates
that the controller properly realizes the rotational dynamics
and maintains validity even in singular configurations.

As an Experiment ID, all elements of {MT,BT,KT} were
scaled by 1000 from the values in (79), and the experimenter
pushed the elbow joint of the robot. As seen in Fig. 7(c),
the robot moved only its elbow part without moving the
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Fig. 8. Results of Experiment II. (a) Proposed controller. (b) Controller with
the function SatPosCtrl disabled, with (16e) being replaced with qx := q∗.

end-effector, indicating the validity of the nullspace dynamics
realized by the proposed controller.

C. Experiment II: Behavior Under Torque Saturation

Another set of experiments was performed to test the effect
of torque saturation. In this experiment, The parameters were
set as in Section VI-A except Fc being set to be 30 % of the
values indicated in Section VI-A. The robot was initially set at
pr in (81), and the experimenter moved the end-effector left
and right, in the y direction, by holding it by hand.

Fig. 8 (a) shows a part of the results; the measured angle
qs,1, the joint-space proxy position qx,1, and the command
torque τm,1 of the base (first) joint. It is shown that the torque
τm,1 was saturated but the proxy position qx,1 remained close
to the measured position qs,1, resulting in stable behavior. In
fact, after t = 7 s when the experimenter left the hand from
the robot, the robot reached a settled state.

For the comparison, another trial was performed with a
variant of the proposed controller in which the function
SatPosCtrl was replaced by an ordinary torque-saturated
PID controller. Specifically, in the algorithm of the function
SatPosCtrl, the line (16e) was replaced by qx := q∗, which
means that its internal position controller was a PID controller
that saturates the torque without maintaining consistency with
the proxy position qx. With this controller, the experimenter
held the end-effector and attempted to move it left and right, in
the y direction. The results of this case are shown in Fig. 8(b).
It can be seen that, once the torques were saturated, the proxy
position qx deviated from the actual position qs. In fact, the
experimenter’s hand was pulled by the force swinging around
unpredictably, and he had to grasp the end-effector tightly to
prevent unsafe motion. The experimenter at last had to stop
the robot at t = 4.7 s to prevent further violent behaviors.

These results suggest that the proposed controller properly
inherits the beneficial properties of TBAC as seen in Fig. 8(a),
and it is effective in preventing such undesirable behaviors
seen in Fig. 8(b).
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D. Experiment III: Contact Force Control

Experiment III was performed to test the capability of
the proposed controller in the contact force control. As a
contact environment, a cardboard box was placed below the
end-effector as shown in Fig 9(a). The reference force was
set as fr = [0, 0, fr,3, 0, 0, 0]

T and fr,3, which is the z
component of the translational reference force, was varied in
a step-like manner among 0 N, 10 N, and 20 N. To prevent
oscillation that happened in preliminary experiments involving
the environment contact, all elements of {MT,BT,KT} were
scaled by 20 from the values in (79). The gain matrices were
set as (79) except the (3, 3)-th element of KT being set zero.

The results are shown in Fig. 9(b). The graph shows the third
element (z component) of the force vector fs = J(qs)

+τs.
The results show that the contact force fs,3 appropriately
tracked the negative of the reference force −fr,3, showing
the applicability of the proposed admittance controller as a
contact force controller.

E. Experiment IV: Unreachable Reference Position

Experiment IV was performed to test the controller’s re-
sponse to the reference position pr set outside the reachable
workspace. The reference position pr was initial set as (81)
and was linearly moved to pr = [0 m, 0 m, 1.5 m, 1, 0, 0, 0]T

from t = 0 s to t = 5 s. This pr represents a position right
above the robot base with an upward-pointing attitude, located
outside the robot’s reachable workspace. After t = 10 s, the
experimenter applied some forces on the end-effector and the
links.

Fig. 10(a) shows some snapshots of this experiment and
Fig. 10(b) shows the temporal changes of the end-effector
positions and the singular values of CTJ. It can be seen that
the robot reached an equilibrium at a configuration pointing
straight upward around t = 4.5 s. After this, two of the
singular values of CTJ were below the threshold ε. Between
t = 9 s and t = 12 s, the experimenter was able to twist
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Fig. 10. Experiment IV. (a) Snapshots. (b) End-effector position in z direction
and the singular values of CTJ. (The vertical lines in the graphs correspond
to the snapshots.

the middle links, indicating the validity of the joint-space
dynamics realized in the nullspace. Then, the experimenter
moved the end-effector by lightly holding it, and the end-
effector moved without much changes in the end-effector
attitude, exhibiting the validity of the task-space admittance
control. After the experimenter left his hand from the robot,
the robot returned to the upward-pointing attitude, indicating
the proper realization of the effect of the task-space proxy
spring.

VII. CONCLUSIONS

This paper has proposed a task-space version of a torque-
bounded admittance controller (TABC) that tolerates singular
configurations and can be used with redundant manipulators.
It imposes an explicit torque limit to each joint without
causing undesirable or unsafe side effects, while it enforces the
end-effector to follow predefined task-space proxy dynamics
as long as the joint torques are unsaturated and the robot
is out of the singular configurations. The behavior of the
robot in the nullspace is determined by predefined joint-space
proxy dynamics. The task- and joint-space proxy dynamics
are combined in a lexicographic manner, with thresholding on
singular values of a particular matrix derived from Jacobian
matrices. The controller was validated through experiments
with a seven-degree-of-freedom (DOF) Kinova Gen3 robot.
The results illustrate that the proposed controller acts as a
proper task-space admittance controller that safely handles
actuator force saturation and singular configurations.
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APPENDIX A
QUATERNION CALCULUS

The attitude of a rigid body in the Cartesian space can be
represented by a 3×3 rotation matrix (∈ SO(3)) whose column
vectors represent the axes of the body-fixed frame. A unit
quaternion can also represent the attitude of a rigid body. A
unit quaternion a = [aw, ax, ay, az]

T ∈ H to its correspondent
3× 3 rotation matrix can be associated by the following map:

q2m(a) ≜ a2
w + a2

x − a2
y − a2

z 2(axay − awaz) 2(axaz + away)
2(axay + awaz) a2

w − a2
x + a2

y − a2
z 2(ayaz − awax)

2(axaz − away) 2(ayaz + awax) a2
w − a2

x − a2
y + a2

z

.
We define the time derivative operator ◦ for a unit quaternion
a = [aw, ax, ay, az]

T as follows:

◦
a ≜ 2

 −ax aw −az ay
−ay az aw −ax
−az −ay ax aw




ȧw
ȧx
ȧy
ȧz

 . (82)

Note that a ∈ H and ◦
a ∈ R3. With this operator, the angular

velocity ω ∈ R3 and the attitude a ∈ H of a rigid body can
be associated as ω =

◦
a.

Now we prepare some operators to relate the discrete-
time representations of the attitude quaternions and the an-
gular velocity vectors. First, the quaternion multiplication
⊗ : H×H → H is defined as follows:

aw
ax
ay
az

⊗

bw
bx
by
bz

≜


awbw − axbx − ayby − azbz
axbw + awbx − azby + aybz
aybw + azbx + awby − axbz
azbw − aybx + axby + awbz

 .

Based on this, let the operators ⊖ : H × H → R3 and ⊕ :
H× R3 → H be defined as follows:3

a⊖ b ≜ q2v (a⊗ inv(b)) (83)
a⊕ r ≜ v2q(r)⊗ a (84)

where inv : H → H, q2v : H → R3, and v2q : R3 → H are
defined as follows:

inv

([
aw
axyz

])
≜

[
aw

−axyz

]
(85)

q2v

([
aw
axyz

])
≜ 2 sgn(aw)

sinc (asin(∥axyz∥))
axyz (86)

v2q (r) ≜
[

cos(∥r∥/2)
r sinc(∥r∥/2)/2

]
. (87)

The functions q2v and v2q are to associate a unit quaternion
to its correspondent rotation vector. With a ∈ H, b ∈ H, and
r ∈ R3, the operators ⊖ and ⊕ satisfy the following relation:

a⊖ b = r ⇐⇒ a = b⊕ r if ∥c∥ < π, (88)

which can be shown through tedious but straightforward
derivations.

3The definitions of these notations are equivalent to those in [23], but
different from those in [34]. In our definitions, the attitude a ⊕ r is the
attitude a rotated by r seen from the world frame, but in [34], it is by r seen
from the body frame. Similar notations are also found in [35], [36].

With the operator ⊖, the following relation holds true:

lim
T→0

(a+ T ȧ)⊖ a

T
=

◦
a. (89)

From (89), the backward Euler discretization of the relation
ω =

◦
a between the attitude a ∈ H and the angular velocity

ω ∈ R3 can be given as follows:

ω = (a⊖ aprv)/T, a = aprv ⊕ Tω (90)

where T is the timestep size and aprv is the value of a
in the previous timestep. The expression (90) is particu-
larly convenient due to its representational similarity to the
backward-Euler discretization of vector quantities in ordinary
vector spaces, such as translational positions or velocities.
Moreover, these operators can be implemented by overloading
the operators ‘−’ and ‘+’ in the C++ language. It should
be noted, however, that the operator ‘⊕’ is not commutative,
unlike its counterpart ‘+’ in ordinary vector spaces.

In order to deal with the position and the attitude of a rigid
body in brief expressions, we define the set P ≜ R3 ×H and
redefine the operators ⊖ : P× P → R6 and ⊕ : P× R6 → P
as follows: [

r1
a1

]
⊖

[
r2
a2

]
≜

[
r1 − r2
a1 ⊖ a2

]
(91)[

r1
a1

]
⊕

[
r2
r3

]
≜

[
r1 + r2
a1 ⊕ r3

]
(92)

where r∗ ∈ R3 and a∗ ∈ H. Note that P can be seen as
an alternative representation of SE(3). The operators ‘⊖’ and
‘⊕’ defined with P and R6 allow concise representations of the
Euler discretizations of translational and rotational equations
of motion. In addition, we define the time derivative operator
‘◦’ for p = [rT ,aT ]T ∈ P as follows:

◦
p ≜ [ṙT ,

◦
aT ]T ∈ R6. (93)

It should be emphasized that p ∈ P and ◦
p ∈ R6.

Now let us consider an n-DOF rigid-link manipulator with
a single end-effector. Let q ∈ Rn be the joint variable vector
of the manipulator, and p ∈ P be the position and the attitude
of the end-effector. Let u ∈ Rn be the joint velocity vector
defined as u = q̇ and v ∈ R6 be the vector of the translational
velocity and the angular velocity of the end-effector, which
satisfies v =

◦
p. With the forward kinematics Φ : Rn → P

of the manipulator, we have p = Φ(q). We can define the
Jacobian of Φ based on the operator ⊖, which is defined as
the function J : Rn → R6×n satisfying the following:

J(q)u = lim
T→0

Φ(q + Tu)⊖Φ(q)

T
∀u ∈ Rn. (94)

With such a function J , we can relate the velocities v ∈ Rn

and u ∈ R6 by v = J(q)u. Moreover, with the backward
Euler discretization u = (q − qprv)/T , we have

(Φ(q)⊖Φ(qprv))/T ≈ J(qprv)u (95)
Φ(q) ≈ Φ(qprv)⊕ TJ(qprv)u (96)

if T > 0 is small enough.
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APPENDIX B
PROOFS OF PROPOSITIONS IN SECTION II-B

In order to provide a proof of Theorem 1, we here introduce
the following lemma:

Lemma 1. The following statement holds true:

arglexmin
ξ∈Rn

{∥Σξ − β∥2, ∥ξ∥2} = Σ+β (97)

where Σ ∈ Rm×n is a rectangular diagonal matrix with non-
negative diagonal elements and β ∈ Rm is a vector.

Proof: Because of the property of Σ, we have the
following:

∥Σξ − β∥2 =

min(m,n)∑
i=1

(σiξi − βi)
2 (98)

where σi is the i-th diagonal element of Σ and ξi and βi are
the i-th elements of β and ξ, respectively. Let I ≜ {i ∈
{1, · · · ,min(m,n)} |σi > 0}. Then, ∥Σξ − β∥2 takes its
minimum

∑
i ̸∈I β2

i if ξi = βi/σi for all i ∈ I . The other
elements, ξi with i ̸∈ I , should be zero to minimize ∥ξ∥.
Therefore, the left-hand side of (97) is ξ whose elements are:

ξi =

{
βi/σi if i ∈ I
0 otherwise, (99)

which is equivalent to Σ+β.
Based on this Lemma 1, we can prove Theorem 1 as

follows:
Proof of Theorem 1: It is known that A can be decom-

posed into the form of A = UΣV T where U ∈ Rm×m

and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n

is a rectangular diagonal matrix with non-negative diagonal
elements. Therefore, the left-hand side (lhs) and the right-hand
side (rhs) of (10) can be connected as follows:

lhs of (10) = arglexmin
x∈Rn

{∥UΣV Tx− b∥2, ∥x∥2}

= V arglexmin
V Tx∈Rn

{∥ΣV Tx−UT b∥2, ∥V Tx∥2}

= V Σ+(UT b) = A+b = rhs of (10). (100)

Here we used Lemma 1 by substituting β = UT b and ξ =
V TA, and also used the fact that ∥Ux∥ = ∥x∥ is satisfied
for an arbitrary orthogonal matrix U .

Likewise, a proof of Corollary 1 can be given as follows:
Proof of Corollary 1: The left- and right-hand sides of

(11) can be connected as follows:

lhs of (11)
= arglexmin

C−1(ξ+d)∈Rn

{∥AC−1(ξ + d)− b∥2, ∥ξ∥2}

= C−1 arglexmin
ξ∈Rn

{∥AC−1ξ − (b−AC−1d)∥2, ∥ξ∥2}

+C−1d

= C−1(AC−1)+(b−AC−1d) +C−1d

= rhs of (11). (101)

In the first line, we used x = C−1(ξ+d) where ξ = Cx−d.
The equivalence between the second line and the third line is
from Theorem 1.
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