
Regular Paper

I/O Scheduler using splitting mechanism
for improving Real-Time performance in eMMC

Shinnosuke Koshiba1,a) YutakaMatsubara1 Hiroaki Takada1

Received: xx xx, xxxx, Accepted: xx xx, xxxx

Abstract: Embedded MultiMedia Card (eMMC) is widely used in many real-time systems, such as in automotive
applications. In embedded systems, it is common for applications to share storage resources, which creates a demand
for protecting real-time processes from interference by other processes. Since eMMC lacks internal command queu-
ing, the I/O scheduler becomes a critical component in ensuring performance. Under these conditions, priority-based
schedulers for real-time systems have been developed, successfully protecting real-time processes. However, our ex-
periments revealed that while these schedulers can handle the bandwidth load caused by a large number of small-sized
I/O requests, they fail to manage the load caused by a small number of large-sized I/O requests. In such cases, tail
latency of real-time process significantly worsens to levels comparable to systems without a scheduler. In this research,
we propose an I/O scheduler equipped with an I/O splitting mechanism that converts a small number of large-sized
I/O operations into a large number of small-sized I/O operations. Experiments demonstrated that, compared to ex-
isting priority-based schedulers, this approach successfully reduced 99th percentile latency, achieving up to a 5-fold
reduction in read latency and up to a 3-fold reduction in write latency.

Keywords: I/O scheduler, eMMC

1. Introduction
In recent years, storage devices have made remarkable ad-

vancements, with flash-based storage such as Embedded Mul-
tiMedia Card (eMMC) and Solid-State Drive (SSD) achieving
higher throughput and lower latency compared to traditional Hard
Disk Drive (HDD). Among them, eMMC is widely adopted in
many embedded systems due to its low power consumption and
compact size, and it is extensively used in systems that require
real-time performance, such as automotive applications.

Furthermore, as the number of applications in embedded sys-
tems increases, it has become common for multiple applications
with varying levels of importance to share the same storage de-
vice. In such environments, there is a growing demand to pro-
tect real-time processes with strict timing constraints from in-
terference by lower-priority processes. Since eMMC lacks in-
ternal command queuing, the I/O scheduler plays a critical role
in meeting these demands. Many I/O schedulers included in the
standard Linux kernel or currently under development primarily
focus on fairness and average performance [1, 2, 3, 4, 5]. How-
ever, several priority-based I/O schedulers have also been devel-
oped for real-time systems [6, 7, 8]. These schedulers have suc-
cessfully reduced tail latency and protected real-time processes
in real-time applications. Experiments have shown, however,
that current priority-based schedulers, while capable of protecting
real-time processes from the background processes imposed by a
large number of small-sized I/O operations, fail to provide pro-

1 Graduate School of Informatics, Nagoya University
a) skoshiba@ertl.jp

tection when dealing with a small number of large-sized I/O op-
erations. This type of load occurs during Linux’s readahead pro-
cess, which issues large asynchronous accesses due to improving
performance of sequential read operations(by default, 128KiB in
Linux 6.5) [10]. Therefore, this issue with current priority-based
schedulers is significant problem, as it can arise in real-world sys-
tems.

This study proposes a method to split the background process’s
I/O operations, converting a small number of large-sized I/O op-
erations into a large number of small-sized I/O operations. This
can be achieved by using the max sectors kb parameter, a Linux
configuration option that limits the maximum I/O size issued to a
specific device [11]. However, using max sectors kb would affect
not only the background process but also the real-time processes.
To address this issue, we propose K2-split, a custom I/O sched-
uler that selectively splits only the I/O operations of background
processes.

The experimental results demonstrate that this approach re-
duces the tail latencies (99th percentile) by a factor of 5 for reads
and 3 for writes compared to existing priority-based schedulers
and the ’none’ scheduler at the expense of throughput. Addi-
tionally, compared to using max sectors kb, K2-split reduces tail
latency by a factor of 3 for reads.

The contributions of this paper are as follows:

• We re-evaluate existing priority-based I/O schedulers with
a focus on eMMC and conduct a comprehensive analysis.
Through experiments, we demonstrate that existing priority-
based schedulers fail to protect real-time processes from
background processes under certain bandwidth load pat-

1



terns.
• We propose K2-split, a priority-based I/O scheduler

equipped with an I/O splitting mechanism. Experiments
confirm that K2-split outperforms existing priority-based
I/O schedulers, demonstrating that it is the optimal I/O
scheduler for real-time systems equipped with eMMC. The
source code for K2-split is available under an open-source
license.*1

The rest of the paper is organized as follows: Section 2 explains
the background knowledge on topics such as the I/O characteris-
tics of flash-based storage and priority-based I/O scheduler such
as K2 and mq-deadline. Section 3 show the problems of existing
priority-based I/O scheduler. Section 4 explains our proposal that
scheduler used I/O splitting mechanism. Section 5 show the Su-
periority of our proposal compared with existing priority-based
I/O schedulers. Section 6 discusses related research, and Section
7 concludes with a summary of the findings and future challenges.

2. BACKGROUND
In this section, we introduce the characteristics of three rep-

resentative flash-based storage devices: eMMC, UFS, and SSD.
Subsequently, we explain why the I/O scheduler plays a criti-
cal role in performance improvement for real-time systems using
eMMC, and provide an overview of the Linux block layer and
existing priority-based I/O schedulers.

2.1 Flash-Based Storage
Flash-based storage has been widely adopted in many systems

as a high-performance alternative to HDDs. While HDDs suf-
fer from the bottleneck of mechanical seek time, flash storage
achieves significantly shorter access times by reading and writing
data electrically. Representative products of flash-based storage
include eMMC, UFS (Universal Flash Storage), and SSDs.

eMMC is a compact and lightweight flash-based storage device
widely used in embedded systems. It consists of NAND flash
memory and a controller, with the latest eMMC 5.1 achieving
transfer speeds of up to 600 MiB/s and a maximum capacity of
512 GB. On the other hand, UFS and SSDs are devices that have
achieved greater capacity and performance compared to eMMC,
making them promising candidates for adoption in future embed-
ded systems.

Table 1 summarizes the characteristics of these three devices.
A key aspect to note is the presence or absence of command queu-
ing support. Unlike UFS and SSDs, eMMC does not support
command queuing. In devices with command queuing, the in-
ternal device controller ultimately determines the order of access
for commands stored in the queue. Consequently, even if an I/O
scheduler prioritizes real-time processes, background processes
may still take precedence within the device. This means that in
such devices, the internal controller plays a central role, and many
studies have focused on improving the internal controller to pro-
tect real-time processes [16, 17, 18, 19, 20, 21, 22].

In contrast, eMMC lacks both command queuing support and
internal scheduling, meaning that device access is strictly exe-

*1 https://github.com/ertlnagoya/k2-split

Table 1: Comparison of flash-based storage
eMMC UFS SSD

Max Throughput[MiB/s] 600 2,900 7,000
Max Capacity[GB] 512 1,000 10,000
Power consumption more low low high

Support command queuing No Yes Yes
Support parallelism No Yes Yes

Fig. 1: I/O operation in Linux block layer

cuted in the order issued by the I/O scheduler. This makes the I/O
scheduler a critical component for protecting real-time processes
in eMMC, necessitating a comprehensive evaluation of I/O sched-
ulers for this type of storage. This study is the first to conduct a
comprehensive analysis of priority-based I/O schedulers focusing
on eMMC.

2.2 Linux Block Layer
As a key component of the Linux kernel where the I/O sched-

uler operates, we explain the main processes of the block layer in
the Linux kernel (version 6.5.0 used in this study).

Figure 1 illustrates the main processes in the Linux block layer.
First, the block layer begins processing when the file system sub-
mits a bio—a data structure containing information about the I/O
operation (such as data transfer destination and memory page de-
tails)—to the block layer. When a bio arrives at the block layer, it
attempts optimization by merging or splitting the bio as needed.
Bio splitting at this stage follows the setting of max sectors kb,
a kernel parameter. The bio is then converted into a request, an
aggregated structure that the device driver can process. Once the
bio is converted to a request, it is queued in the staging queue
of the I/O scheduler according to the scheduler-specific insertion
policy. Following this, the I/O scheduler retrieves requests from
the staging queue according to its scheduling policy and issues
them to the device driver. For eMMC, this issuance to the de-
vice driver is synchronized with the notification of device access
completion.

Thus, the Linux block layer operates in conjunction with the
I/O scheduler. Since the I/O scheduler determines the final pro-
cessing order of requests for eMMC, the block layer functions as
the most critical component for eMMC.

2.3 PRIORITY-BASED I/O SCHEDULER
Priority-based scheduling is a long-established method for

managing tasks and processes in a system and is widely used
in real-time systems. This approach is no exception for I/O re-

2



sources, and priority-based scheduling is the optimal solution for
improving real-time performance in eMMC.

The block layer includes an I/O-specific priority system, dis-
tinct from task priority, known as ioprio. The ioprio system com-
prises three priority classes: the real-time class, best-effort class,
and idle class. The real-time class has the highest priority, while
the idle class has the lowest. Additionally, within the real-time
and best-effort classes, priorities are further distinguished using
priority numbers ranging from 0 to 7, with 0 indicating the high-
est priority.

The two existing priority-based schedulers discussed below
perform priority-based scheduling based on the ioprio assigned
to each request.

The K2 scheduler is one of the priority-based I/O schedulers
implemented as a Linux kernel module [6]. Developed for NVMe
SSDs, K2 successfully reduces the tail latency of real-time pro-
cesses by prioritizing real-time requests while limiting the num-
ber of requests issued to the device. When using K2 with eMMC,
the lack of command queuing in eMMC means that the number
of requests that can be issued to the device is always limited to
one. K2 features nine staging queues, of which eight are real-time
queues and one is a best-effort queue. When a request arrives
at the block layer, it is enqueued in a real-time queue if its io-
prio class is real-time; otherwise, it is enqueued in the best-effort
queue. For the real-time class, the specific queue among the eight
real-time queues is selected based on the priority number. When
K2 issues requests to the device driver, it starts with the highest-
priority queue (queue with priority number 0 within the real-time
class), and requests within the queue are processed in FIFO (First
In, First Out) order. Thus, when used with eMMC, K2 functions
as a simple and lightweight priority-based I/O scheduler.

MQ-DEADLINE is a simple scheduler designed for HDDs.
This scheduler minimizes seek operations by sorting requests in
the order of their sector addresses. However, to prevent starvation
of requests accessing distant disk regions, a deadline is assigned
to each request. Furthermore, priority support was added start-
ing with Linux kernel version 5.9. While the primary goal of
mq-deadline is not priority scheduling, it can also function as a
priority-based I/O scheduler.

3. EVALUATION OF PRIORITY-BASED I/O
SCHEDULER

In this section, we conduct a comprehensive evaluation of
priority-based I/O schedulers, which were explained in the pre-
vious section, to assess their potential effectiveness in real-time
performance in eMMC. To the best of our knowledge, this study
is the first to analyze the latency characteristics and suitability of
priority-based I/O schedulers for real-time workloads targeting
eMMC.

3.1 Bandwidth load
To comprehensively investigate whether existing priority-

based I/O schedulers are sufficient for use in real-time systems,
we analyzed them using two types of bandwidth loads that could
potentially compete with real-time processes at the block layer.
At the block layer, there are two bandwidth load patterns that can

Table 2: Experimental Environment
OS Ubuntu 22.04

kernel Linux kernel 6.5.0 custom
CPU Intel Pentium Silver N5000(4core)
RAM 8GB

eMMC FORESEE eMMC 5.1 NCEMAD9D
eMMC Capacity 64GB
eMMC interface USB3.1

negatively impact real-time processes:
Request Count-Induced Bandwidth Load : A large number of
small-sized I/O requests simultaneously present can degrade the
performance of real-time processes. A study analyzing I/O pat-
terns from 18 common applications on a Nexus 5 smartphone
with an internal eMMC found that 57.4% of I/O requests were
single-page (4KiB) accesses in 15 of the 18 applications [15].
Thus, it is highly likely that the presence of a large number of
small-sized I/O requests can have a negative impact on real-time
processes in eMMC.
Block Size-Induced Bandwidth Load : A small number of
large-sized I/O requests can also degrade the performance of real-
time processes. In Linux, the readahead feature is designed to
improve throughput during sequential reads. When the kernel de-
termines that an application’s access pattern is sequential read, it
asynchronously accesses the device and pre-loads the data into
the cache. This results in consistent cache hits for the applica-
tion, significantly improving average performance(excluding Di-
rect I/O). Since readahead accesses the device with a block size of
128KiB(this is the default value and can be configured), the load
generated by such large-sized I/O requests can arise. Therefore,
a small number of large-sized I/O requests can also be a potential
source of bandwidth load.

3.2 Evaluation Setup
The experimental environment is outlined in Table 2, and the

storage device used is an eMMC 5.1 connected via USB 3.1. Ad-
ditionally, the parameter nr requests, which limits the number of
requests in the block layer, is set to 256 (the default for eMMC is
2).

In this experiment, we simulate the two types of background
process and the real-time process using the Flexible I/O Tester
(FIO) version 3.28. The real-time process is configured with syn-
chronous I/O and a block size of 64KiB. The background pro-
cesses are set up to simulate the two types of bandwidth loads as
described above.
Request Count-Induced Bandwidth Load : The block size is
kept constant at 4KiB, while the number of outstanding requests
is gradually increased to 1, 4, 8, 16, 32, 64, and 128.
Block Size-Induced Bandwidth Load : The number of out-
standing requests is kept at 1, while the block size of the requests
is gradually increased to 4, 16, 32, 64, 128, 256, and 512 KiB.
To ensure that the latency of drive access is reflected in the re-
sults for both the real-time process and the background process,
FIO was configured to use Direct I/O, bypassing Linux’s buffer
cache. Using the Linux ionice command, the real-time process
was set to the real-time class, and the background process was
set to the idle class. These simulated accesses were comprehen-

3



sively performed across all access types: random read, sequential
read, random write, and sequential write, to analyze the behavior
of priority-based schedulers. Additionally, all parameters for mq-
deadline are left at their default settings. the real-time process
issues about 32,000 I/O requests, which we believe is sufficient
for discussing the worst-case scenario (99th percentile latency).

3.3 Evaluation Results : Request Count
Figure 2 shows the experimental results of applying the Re-

quest Count-Induced Bandwidth Load to the real-time process.
The x-axis represents the number of outstanding requests (with
a block size of 4KiB) increasing from 1 to 128, while the y-axis
shows the 99th percentile latency of the real-time process. In
the random read operation in Figure 2a, it can be seen that the
99th percentile latency of the real-time process under ”none” de-
teriorates as the number of outstanding requests increases. The
latency worsens approximately 40-fold, from 2.2ms with 1 re-
quest to 80.2ms with 128 requests. In contrast, both K2 and mq-
deadline prevent the latency degradation of the real-time process
despite the increase in the number of outstanding requests. Please
note that the results for K2 and mq-deadline are displayed over-
lapping. This is because, with priority-based scheduling, the real-
time process is always issued with priority, regardless of the num-
ber of background processes. A similar trend can be observed in
the sequential read operation in Figure 2b, where the latency un-
der ”none” worsens approximately 37-fold, from 2.1ms with 1
request to 79.1ms with 128 requests. Both K2 and mq-deadline
effectively suppress latency degradation in the same way as in the
random read case.

On the other hand, Figures 2c and 2d show the results of the
same experiment for write operations. In write operations, the
behavior is different from that of reads. Similar to the read case,
”none” shows a worsening of the 99th percentile latency of the
real-time process as the number of outstanding requests increases,
with the latency in random writes worsening approximately 29-
fold, from 6.1ms with 1 request to 179.3ms with 128 requests.
While mq-deadline was able to prevent latency degradation in
read operations similarly to K2, it shows worsening latency in
write operations as the number of outstanding requests increases.
As explained in the previous section, mq-deadline is not a fully
priority-based scheduler; its primary objectives are to reduce seek
time and ensure request deadlines. This result indicates that even
if high-priority requests exist, lower-priority requests may be pri-
oritized and issued to the device. On the other hand, since the
K2 scheduler operates as a fully priority-based scheduler, it can
separate the effects of outstanding requests numbers and suppress
the degradation of the 99th percentile latency of the real-time pro-
cess, even during write operations.

3.4 Evaluation Results : Block Size
Figure 3 shows the experimental results when the Block Size-

Induced Bandwidth Load was applied. The x-axis represents
the block size of the background process (with 1 outstanding re-
quest), increasing from 4KiB to 512KiB, and the y-axis shows the
99th percentile latency of the real-time process. The total band-
width load is adjusted to match the experiment shown in Figure 2,

where the maximum load is 4KiB × 128 = 512KiB in Figure 2,
and 512KiB × 1 = 512KiB in Figure 3. Figure 3a shows the
results of random read operations. Under ”none,” the 99th per-
centile latency worsens from 3.8ms with a 4KiB block size to
8.2ms with a 512KiB block size, a roughly 2-fold increase. In-
dicating that, the 99th percentile latency of the real-time process
cannot be prevented from degrading as the background process
block size increases. Similarly, both K2 and mq-deadline fail to
mitigate the impact on the real-time process due to the increas-
ing block size of the background process. For K2, the 99th per-
centile latency worsens by about 5 times as the background pro-
cess block size increases from 4KiB to 512KiB. Figures 2 and
3 demonstrate that, despite the same total bandwidth load, ex-
isting priority-based schedulers can protect real-time processes
from load due to an increase in the number of outstanding re-
quests, but they fail to protect them from load caused by an in-
crease in the block size of background processes.

In cases where there are many small I/O requests, as shown in
Figure 2, priority-based scheduling ensures that the real-time pro-
cess is prioritized, so it does not have to wait for a total of 512KiB
worth of device accesses consisting of 128 requests of 4KiB each
(under maximum bandwidth load conditions). However, this is
not the case when there is a single large-sized request, as shown
in Figure 3. Since eMMC lacks preemption functionality and
parallel access capability, once a device access is issued, the next
access is forced to wait in the block layer for the duration of that
device access. This means that even with priority-based schedul-
ing, the real-time process may, in the worst case, be delayed by
the duration of the background process’s device access, leading to
degraded real-time performance. As a result, the 99th percentile
latency of the real-time process increases along with the block
size of the background process.

As seen in Figures 3b, 3c, and 3c, no schedulers can protect
the real-time process from the increased block size of background
processes across all access types, including write operations.

3.5 summary
In summary, with the Request Count-Induced Bandwidth

Load, K2 was able to protect the real-time process from the im-
pact of an increasing number of outstanding requests across all
access types through priority-based scheduling. However, since
priority-based scheduling is not the primary objective of mq-
deadline, the 99th percentile latency of the real-time process in-
creased along with the number of outstanding requests during
write operations, similar to ”none”. With the Block Size-Induced
Bandwidth Load, even fully priority-based schedulers like K2
saw an increase in the 99th percentile latency of the real-time
process as the block size of the background process increased.
In conclusion, current priority-based schedulers can protect real-
time processes from the load caused by a large number of small-
sized I/O requests, but they cannot protect real-time processes
from the load caused by a small number of large-sized I/O re-
quests.

4. The I/O SPLITTING MECHANISM
In the previous section, we found that existing priority-based

4



(a) random read (b) sequential read (c) random write (d) sequential write

Fig. 2: 99th percentile latency of Real-Time process with Request Count-Induced Bandwidth Load

(a) random read (b) sequential read (c) random write (d) sequential write

Fig. 3: 99th percentile latency of Real-Time process with Block Size-Induced Bandwidth Load

I/O schedulers, such as K2, can protect real-time processes from
bandwidth load caused by a large number of small-sized I/O re-
quests but cannot protect them from the bandwidth load caused by
a small number of large-sized I/O requests. Therefore, in this sec-
tion, we explain our proposal, which uses an I/O splitting mecha-
nism to convert a small number of large-sized I/O requests into a
large number of small-sized I/O requests, thereby protecting real-
time processes even from the bandwidth load caused by a small
number of large-sized I/O requests.

4.1 max sectors kb
max sectors kb is a critical Linux configuration parameter that

allows setting the maximum block size for requests issued to the
device. This parameter can be used to split I/O. When a bio with
a block size greater than the value set in max sectors kb arrives
at the block layer, the kernel splits the bio into multiple bios, each
with a block size equal to the value set in max sectors kb. By ap-
propriately configuring max sectors kb, it is possible to convert a
small number of large-sized I/O requests into a large number of
small-sized I/O requests. As mentioned in Section 2.2, bio split-
ting using max sectors kb is performed before the I/O scheduler
operates.

However, there is a significant challenge in using
max sectors kb for I/O splitting mechanism: it applies to
all storage accesses. As a result, not only low-priority back-
ground processes but also high-priority real-time processes
are subject to splitting. This is undesirable because splitting
decreases throughput and increases total latency, which can
negatively impact real-time processes.

4.2 K2-split : I/O Scheduler with Splitting Mechanism
We propose an I/O scheduler equipped with an I/O splitting

mechanism. The main operations of an I/O scheduler are divided

Fig. 4: Overview of the splitting process in K2-split

into two main tasks: inserting requests that arrive at the block
layer into the staging queue, and issuing requests from the stag-
ing queue to the device driver. Our proposed I/O scheduler per-
forms I/O splitting for non-real-time processes just before inser-
tion into the staging queue. By employing the same structure for
the staging queue and the same method for issuing requests from
the staging queue to the device driver as in the K2 scheduler, we
have implemented a priority-based scheduler equipped with an
I/O splitting mechanism.

The detailed implementation of the splitting mechanism is il-
lustrated in Figure 4. If a request that arrives at the staging queue
belongs to the real-time class, it is directly inserted into the stag-
ing queue. Otherwise, if the request belongs to any other priority
class, the request is split into the specified size before being in-
serted into the staging queue. Additionally, we have implemented
a configuration parameter that allows setting the maximum is-
suance size, and the number of splits is determined based on the
maximum issuance size specified by the user. The actual split-
ting process is implemented based on the bio splitting function
within the Linux kernel. At the point when the I/O arrives at the
staging queue, it has already been converted from a bio structure
into a request structure. In the added splitting mechanism, the

5



bio is first extracted from the request. Then, using the bio split-
ting function employed within the kernel, the bio is split into the
specified size, converted back into a request, and inserted into the
staging queue. Through this process, an I/O scheduler equipped
with an I/O splitting mechanism is implemented.

We implemented the K2 scheduler with the above-described
I/O splitting mechanism as ”K2-split” in the form of a Linux ker-
nel module. The detailed implementation of K2-split is avail-
able on GitHub. It is important to note that to implement the
splitting mechanism as a kernel module, we modified a part
of the source code of Linux kernel version 6.5.0. Specifi-
cally, we added an EXPORT SYMBOL declaration to the kernel
functions blk mq get new requests, blk mq bio to request, and
bio set ioprio, which are used in the splitting mechanism, and
then rebuilt the kernel.

5. EVALUATION OF SPLITTING MECHA-
NISM

In this section, we evaluate the I/O splitting method described
in the previous section. The experimental environment is the
same as in Table 2, and the experiments were conducted using
an eMMC connected via USB 3.1.

5.1 Comparison of K2 and K2 with a splitting mechanism
In the initial evaluation, we assess the system using the Block

Size-Induced Bandwidth Load, which K2 could not handle effec-
tively to maintain real-time performance, as discussed in Section
3.4. The experimental method follows that of Section 3.4, where
FIO is used to run the real-time process and background process
concurrently. The real-time process issues synchronous I/O with
a block size of 64KiB, while the background process keeps the
number of outstanding requests at 1 and increases the block size
from 4KiB to 512KiB. Additionally, the max sectors kb value
is set to 4KiB, and the parameter representing the maximum is-
suance size for K2-split is also set to 4KiB.

Figure 5a shows the results for random reads, with the x-axis
representing the block size of the background process and the
y-axis showing the 99th percentile latency of the real-time pro-
cess. While the 99th percentile latency of the real-time process
increases with the background process block size under K2, K2-
split maintains a consistent latency regardless of the background
process size. At a block size of 512KiB, the 99th percentile la-
tency of the real-time process under K2 is 8.0ms, whereas K2-
split achieves a significantly lower latency of 1.6ms, reducing la-
tency by approximately 5 times. This is achieved by the splitting
mechanism described in Section 4, which ensures that the I/O of
background processes is always split into 4KiB block size. As
a result, the real-time process only has to wait for 4KiB block
size, regardless of block size that background process issued, al-
lowing K2-split to protect real-time processes from the increasing
block size of background processes. Although the splitting with
max sectors kb maintains a consistent 99th percentile latency re-
gardless of the block size of the background process, the latency
remains higher compared to K2-split. This increased latency is
due to the splitting of the real-time process as well. Since the
max sectors kb value is set to 4KiB while the real-time process

uses a block size of 64KiB, the real-time process is always split
into 16 parts, resulting in approximately three times higher la-
tency compared to K2-split.

Figure 5b shows the results for sequential reads, where K2-
split successfully protects the real-time process from the increas-
ing block size of background processes, achieving approximately
a 4.9-fold reduction in latency compared to K2 with a background
process block size of 512KiB. Figure 5c and 5d show the results
for write operations, where K2-split similarly protects the real-
time process from the increasing block size of background pro-
cesses, just as it does with read operations. For random writes,
K2-split achieves a 3.1-fold reduction in 99th percentile latency
compared to K2, and for sequential reads, it achieves a 2.8-fold
reduction in latency.

Figure 6 shows the complementary cumulative distribution
function (CCDF) of the real-time process latency when the back-
ground process issues 512KiB block size requests. The x-
axis represents latency in milliseconds, and the y-axis shows
the probability of the latency being equal to or greater than
the corresponding x value, indicating the predictability (real-
time performance) of the latency. From the perspective of
real-time performance, K2-split demonstrates significantly bet-
ter latency predictability across all access types compared to K2
and K2+max sectors kb. Please note that for values below the
99.99% threshold (10−4 on the y-axis), the observation frequency
is low and unstable, reducing the reliability of the data.

In summary, K2-split can minimize the tail latency of real-time
processes regardless of the block size of competing background
requests. Additionally, priority-based scheduling minimizes the
tail latency of real-time processes regardless of the number of
outstanding requests from background processes (as explained
in Section 3.3). For these reasons, K2-split can be considered
the optimal I/O scheduler for real-time systems equipped with
eMMC.

5.2 Comparison of K2-split and max sectors kb
In the previous section, we confirmed that the I/O splitting

mechanisms achieved superior performance in terms of 99th per-
centile latency compared to the conventional K2 scheduler. In
this section, we conduct a comparative evaluation of the two split-
ting methods: I/O splitting with max sectors kb and I/O splitting
with the K2-split scheduler. As in previous experiments, we use
FIO to run the real-time process and background process con-
currently. The background process generates 512KiB block size
requests, and the real-time process is evaluated with four block
sizes: 4KiB, 64KiB, 128KiB, and 512KiB. Both the background
and real-time processes use synchronous direct I/O with a sin-
gle process running concurrently. The maximum issuance size
for both max sectors kb and K2-split is varied from 512KiB (no
splitting of the background process) to 4KiB (128 splits of the
background process), and their behaviors are compared.

Figure 7 shows the evaluation results for different block sizes
of the real-time process. The x-axis represents the maximum is-
suance size (number of splits), and the y-axis represents the 99th
percentile latency of the real-time process. As shown in In Fig-
ure 7a, when the real-time process uses the minimum block size

6



(a) random read (b) sequential read (c) random write (d) sequential write

Fig. 5: 99th percentile latency of real-time process with Block Size-Induced Bandwidth Load

(a) random read (b) sequential read (c) random write (d) sequential write

Fig. 6: Complementary Cumulative Distribution Function (CCDF) of the real-time process latency with a background process block size
of 512KiB

(4KiB), even with splitting using max sectors kb, the real-time
process is not split, and only the background process is split.
Therefore, both max sectors kb and K2-split achieve the same
results. For both splitting methods, the 99th percentile latency
of the real-time process decreases as the maximum issuance size
is reduced. With a maximum issuance size of 512KiB (no split-
ting), the 99th percentile latency with K2-split is 6.5ms, while
with a 4KiB maximum issuance size (128 splits), the latency is
reduced to 0.9ms—a 7.2x improvement.

Figure 7b shows the results when the real-time process is-
sues requests with a block size of 64KiB. Unlike in Figure 7a,
with max sectors kb, setting the maximum issuance size smaller
than 64KiB results in the real-time process being split along
with the background process, causing the 99th percentile latency
to worsen. For example, with a 4KiB maximum issuance size
(where the real-time process is split into 16 parts), the 99th
percentile latency with max sectors kb is 6.2ms, which is 3.8x
worse than the 1.6ms latency achieved by K2-split. Figures 7c
and 7d show similar trends, with the 99th percentile latency
for a 4KiB maximum issuance size worsening to 43.7ms with
max sectors kb, compared to 7.1ms with K2-split—an approxi-
mately 6.1x difference. These results demonstrate that splitting
the real-time process with max sectors kb significantly increases
99th percentile latency.

Next, we discuss the optimal settings for the maximum is-
suance size for each splitting method. As shown in Figure 7,
the optimal setting for K2-split is always the minimum value of
4KiB, regardless of the block size of the real-time process. In
contrast, the optimal setting for max sectors kb varies depending
on the block size of the real-time process. For 4KiB, the opti-
mal setting is 4KiB, the same as with K2-split. For 64KiB, the
optimal setting is 32KiB, achieving a 99th percentile latency of

2.4ms; however, this is still 1.4x worse than the 1.6ms achieved
by K2-split with a 4KiB setting. The optimal setting for 128KiB
is 64KiB, and for 512KiB, it is 128KiB.

These results indicate that with max sectors kb, the optimal
maximum issuance size depends on the block size of the real-time
process. Therefore, in practical systems, users must identify the
block size of high-priority applications and configure the maxi-
mum issuance size accordingly. However, identifying the block
size of an application is challenging, and applications may not al-
ways issue requests with a single block size. For example, in the
case of the CameraVideo application, it was found that while the
maximum access size was 10,104KB, the average access size was
244KB—a nearly 50-fold difference [15]. Thus, determining the
optimal settings for max sectors kb becomes difficult based on
the block size and issuance characteristics of the real-time pro-
cess, making it impractical to use max sectors kb as a splitting
mechanism in real-world real-time systems. On the other hand,
with K2-split, simply setting the maximum issuance size to the
minimum value of 4KiB consistently achieves the lowest latency,
regardless of the block size or issuance characteristics of the real-
time process. Moreover, K2-split guarantees that the only factor
affecting the latency of the real-time process is waiting for 4KiB
block sized device access of background processes. This provides
higher latency predictability (real-time performance) compared
to max sectors kb and other schedulers, making K2-split a more
suitable choice for practical real-time systems.

Next, we compare each splitting method with K2 for total
throughput. Table 3 presents the total throughput and 99th per-
centile latency for all access types with K2, K2+max sectors kb,
and K2-split (where max=4KiB indicates the maximum issuance
size is set to 4KiB). Block size of background process is 512KiB.
Across all access types, K2-split records lower 99th percentile

7



(a) RT-4KiB (b) RT-64KiB (c) RT-128KiB (d) RT-512KiB

Fig. 7: 99th percentile latency for each maximum issuance size according to the block size of each real-time process. The max sectors
on the x-axis represents the configured maximum issuance size for each splitting method.

Table 3: Total Throughput [MiB/s] (at real-time process 99th percentile [ms])
read write

random sequential random sequential

RT-4KiB RT-64KiB RT-4KiB RT-64KiB RT-4KiB RT-64KiB RT-4KiB RT-64KiB

K2 81.02 (16.32) 75.63 (3.26) 85.93 (6.65) 79.24 (3.19) 51.98 (10.16) 48.04 (6.59) 55.49 (10.16) 51.83 (6.46)
K2 + max sectors kb(max=64KiB) 55.50 (1.50) 71.47 (2.61) 58.36 (1.42) 70.53 (2.61) 31.28 (4.11) 45.26 (5.21) 32.32 (4.08) 44.32 (5.21)
K2 + max sectors kb(max=16KiB) 28.20 (0.99) 51.97 (2.77) 30.37 (0.93) 53.93 (2.67) 13.65 (1.94) 27.55 (6.91) 14.26 (1.94) 24.63 (7.18)
K2 + max sectors kb(max=4KiB) 17.08 (0.85) 22.52 (6.26) 16.34 (0.84) 22.60 (6.19) 8.79 (1.25) 12.30 (14.75) 8.96 (1.24) 12.12 (12.91)
K2-split(max=64KiB) 55.55 (1.50) 73.12 (2.38) 58.84 (1.42) 74.84 (2.34) 31.79 (4.11) 44.61 (5.41) 31.92 (4.11) 47.85 (5.08)
K2-split(max=14KiB) 28.20 (1.00) 72.30 (1.70) 30.43 (0.93) 74.01 (1.63) 13.67 (1.94) 36.88 (4.36) 14.03 (1.94) 38.60 (4.36)
K2-split(max=4KiB) 17.08 (0.85) 62.05 (1.53) 16.40 (0.83) 65.53 (1.47) 8.67 (1.25) 35.12 (3.72) 8.96 (1.24) 35.16 (3.78)

latency compared to K2, and the 99th percentile latency de-
creases as the maximum issuance size is reduced. However,
the total throughput deteriorates with both K2+max sectors kb
and K2-split compared to K2. For the real-time process with
a block size of 64KiB, with max=4KiB, the throughput with
K2+max sectors kb drops to 22.52 MiB/s, which is approxi-
mately 26% of the throughput achieved by K2. In contrast, K2-
split maintains a throughput of 62.05 MiB/s, approximately 72%
of K2’s performance. With K2-split, reducing the maximum is-
suance size improves the 99th percentile latency across all access
types, but at the cost of degraded throughput. Therefore, it is es-
sential for users to determine the optimal maximum issuance size
based on the importance of throughput versus latency in their spe-
cific use case.

5.3 Application Benchmark
Thus far, we have generated storage load and conducted eval-

uations using simulated workloads with fio. In the final evalu-
ation, however, we use the MySQL benchmark from sysbench
to evaluate the I/O splitting mechanism with storage access pat-
terns closer to those of real applications. We use sysbench version
1.0.20 in the OLTP read-only configuration. This configuration
emulates a database query workload using the MySQL InnoDB
engine, performing random reads and small amounts of writes for
transaction logs.

In the experiment, sysbench was executed as a real-time pro-
cess, while two Unix dd processes with a block size of 512KiB
were run concurrently as background processes. Both dd pro-
cesses were configured to use Direct I/O. The maximum issuance
size for both max sectors kb and K2-split was set to 4KiB.

Figure 8 compares the output of sysbench under different
schedulers when the dd processes performed read-only opera-
tions. The length of the bars indicate the completion latencies of

database queries, where each query accesses the storage multiple
times. It shows that schedulers with the I/O splitting mechanism
(K2+max sectors kb and K2-split) achieved lower latency across
all metrics—minimum, median, 95th percentile latency, and max-
imum—compared to K2 and none. Additionally, when compar-
ing max sectors kb and K2-split, K2-split achieved lower latency
across all metrics. This is because, unlike max sectors kb, K2-
split avoids splitting the real-time process, which helps reduce
latency further.

Figure 9 presents the sysbench output when the dd processes
performed write operations. Similar to the read scenario, K2-split
achieved the lowest latency among all schedulers.

These results demonstrate that the I/O splitting mechanism pro-
vides significant benefits not only in macro benchmarks but also
under complex database workloads. Furthermore, the K2-split
achieves lower latency compared to max sectors kb-based split-
ting. These results support our assertion from the previous section
that max sectors kb is challenging to use in real-world applica-
tions where the block size of real-time processes is not known,
and that K2-split is more suitable for practical application use.

6. RELATED WORK
There are many studies on timing constraints in flash-based

storage that are related to our research. We classify these exist-
ing studies into two groups: those that support timing constraints
by improving the internal controller of SSDs and UFS, and those
that support timing constraints through the I/O scheduler at the
block layer.

6.1 Improvements to the internal controller
As explained in Section 2, among the three representative

flash-based storage devices, UFS and SSD have an internal con-
troller called the Flash Translation Layer (FTL). In SSDs and

8



Fig. 8: Event processing times of the Sysbench SQL benchmark
for different I/O schedulers with a read background load.

Fig. 9: Event processing times of the Sysbench SQL benchmark
for different I/O schedulers with a write background load.

UFS, the FTL is the key to managing timing constraints, and there
have been several studies focused on improving the FTL to sup-
port such constraints.

PaRT-FTL takes an approach that leverages internal paral-
lelism [16]. By storing read operations and write operations (in-
cluding garbage collection) on separate chips, it prevents read op-
erations from being delayed by write operations.

RTFTL protects other operations from garbage collection and
improves worst-case scenarios [17]. Specifically, it divides the
garbage collection process into four steps: block selection, read-
ing valid data, writing data to another block, and finally erasing
the block. These steps are executed when normal read/write oper-
ations are completed, thereby protecting normal operations from
being interrupted by garbage collection.

While the previous two methods focus on protecting processes
from write operations, Janus-FTL improves the predictability of
write operations themselves [18]. Janus-FTL changes the storage
area depending on the type of write request: frequently accessed
data is stored in a page-mapping area, while less frequently ac-
cessed data is stored in a block-mapping area. This improves the
predictability of write operations.

6.2 Improvements to I/O scheduler on Linux block layer
Several I/O schedulers have been developed for real-time sys-

tems.
Kim et al. introduced the Completely Fair Scheduler (CFS),

a CPU scheduling technique, into the I/O layer [8]. They intro-
duced priority queues between the software queues, which ex-
ist for each process in the block layer, and the hardware queues,

which exist for each device. There are as many priority queues
as there are process priorities, and each request is inserted into a
priority queue according to the process’s priority. Each priority
queue is assigned tokens, and requests are issued to the hardware
queue based on the number of tokens.

Kyber, an I/O scheduler standard in Linux, was developed for
SSDs [14]. categorizes requests into three categories: read, syn-
chronous write, and others. Each category is assigned a specific
number of tokens, which represent the number of requests al-
lowed within the device. By properly configuring these tokens,
Kyber can control latency for each category. As a result, Kyber
successfully protects read requests from being delayed by write
requests.

As demonstrated, there are several studies aimed at improv-
ing the real-time performance of flash-based storage. However,
no existing research addresses the degradation of real-time per-
formance in real-time processes caused by large-sized requests,
which is related to the lack of preemption in eMMC. I/O sched-
uler with splitting mechanism that proposed in this study is the
first study to tackle this issue.

7. CONCLUSION
This study evaluated two existing priority-based I/O sched-

ulers targeting eMMC. The results revealed that neither scheduler
could protect real-time processes from bandwidth loads caused
by a small number of large-sized I/O requests, leading to a sig-
nificant deterioration in 99th-percentile latency. To address this
issue, we proposed K2-split, an I/O scheduler equipped with an
I/O splitting mechanism that divides large-sized I/O requests into
multiple smaller-sized I/O requests.

K2-split successfully protected real-time processes from band-
width loads caused by large-sized I/O requests, which existing
priority-based schedulers could not handle, achieving up to a 5x
reduction in latency compared to K2. Furthermore, K2-split pro-
vided superior latency predictability compared to the splitting
method using max sectors kb, making it more suitable for real-
time systems, as confirmed by our experiments.

Future directions of this research are as follows: (1) Verify-
ing the effectiveness of the proposed method not only for eMMC
but also for the latest NVMe SSDs and UFS. Given their higher
performance compared to eMMC, NVMe SSDs and UFS may
become the first choice for real-time embedded systems in the fu-
ture. (2) Introduction of a dynamic splitting mechanism. While
K2-split achieved significantly lower latency for real-time pro-
cesses compared to K2, it resulted in a reduction in throughput.
Currently, the split count is determined statically, and background
process I/O is always split regardless of the presence of real-time
processes. It is necessary to consider a mechanism that dynami-
cally determines the use and number of splits based on the storage
access cycle of the real-time process and the performance degra-
dation of background processes. This approach could maintain
low latency for real-time processes while minimizing the perfor-
mance degradation of background processes.

9



References
[1] B. Jun and D. Shin:Workload-aware budget compensation

scheduling for NVMe solid state drives, in Proceedings of
the 2015 Non-Volatile Memory System and Applications
Symposium (NVMSA), Hong Kong, China: IEEE, Aug.
2015, pp. 19–24.

[2] J. Kim, S. Seo, D. Jung, J.-S. Kim, and J. Huh.:Parameter-
aware I/O management for solid state disks (SSDs), IEEE
Transactions on Computers, vol. 61, no. 5, pp. 636–649,
May 2012.

[3] A. Tavakkol, M. Sadrosadati, S. Ghose, J. S. Kim, Y. Luo,
Y. Wang, N. M. Ghiasi, L. Orosa, J. Gómez-Luna, and
O. Mutlu.:FLIN: Enabling fairness and enhancing perfor-
mance in modern NVMe solid state drives, in Proceedings
of the 45th Annual International Symposium on Computer
Architecture (ISCA), Los Angeles, CA, USA: IEEE, Jun.
2018, pp. 397–410.

[4] S. Park and K. Shen.:FIOS: A fair, efficient flash I/O
scheduler, in Proceedings of the 10th USENIX Conference
on File and Storage Technologies (FAST), San Jose, CA,
USA: USENIX, Feb. 2012, pp. 155–170.

[5] Jung, M.; Choi, W.; Srikantaiah, S.; Yoo, J.; Kandemir,
M.T.:HIOS: A host interface I/O scheduler for Solid State
Disks, In Proceedings of the Annual International Sym-
posium on Computer Architecture (ISCA), Minneapolis,
MN, USA, 14–18 June 2014.

[6] Till Miemietz, Hannes Weisbach, Michael Roitzsch, and
Hermann Härtig.:K2: Work-Constraining Scheduling of
NVMe-Attached Storage, In Proceedings of 2019 IEEE
Real-Time Systems Symposium (RTSS ’19), pages 56–68,
2019.

[7] F. Blagojevic, C. Guyot, Q. Wang, T. Tsai, R. Mateescu
and Z. Bandic.:Priority IO scheduling in the cloud, Proc.
USENIX Conf. Hot Topics Cloud Comput., pp. 1-6, 2013-
Jun.

[8] Kyusik Kim, Seungkyu Hong, and Taeseok
Kim.:Supporting the priorities in the multi-queue block
I/O layer for NVMe SSDs, J. Semiconduct. Technol. Sci.
20 (02 2020), 55–62.

[9] MQ-Deadline Implementation,https://elixir.
bootlin.com/linux/latest/source/block/mq-
deadline.c,Accessed: 2024-10-02.

[10] F. Wu, H. Xi, and J. Li.:Linux readahead: less tricks for
more, in Proceedings of the Linux Symposium, 2007.

[11] Queue sysfs,https://www.kernel.org/doc/
Documentation/block/queue-sysfs.txt, Accessed:
2024-10-02.

[12] Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Ni-
hat Altiparmak.:Do we still need io schedulers for low-
latency disks?, In 10th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 23), HotStorage
’23, 2023.

[13] Ren, Zebin, Krijn Doekemeijer, Nick Tehrany, and Ani-
mesh Trivedi.:BFQ, Multiqueue-Deadline, or Kyber? Per-

formance Characterization of Linux Storage Schedulers in
the NVMe Era. ,In Proceedings of the 15th ACM/SPEC
International Conference on Performance Engineering, pp.
154-165. 2024.

[14] O. Sandoval, blk-mq: Introduce Kyber mul-
tiqueue I/O scheduler, Commit message for
the Linux kernel, 2017. [Online]. Available:
https://patchwork.kernel.org/patch/9672023 Accessed:
2024-10-02.

[15] D. Zhou, W. Pan, W. Wang and T. Xie.:I/O characteris-
tics of smartphone applications and their implications for
eMMC design, Proc. of IEEE IISWC, 2015.

[16] Missimer, Katherine, and Richard West.:Partitioned real-
time NAND flash storage.,2018 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2018.

[17] Qin, Z.; Wang, Y.; Liu, D.; Shao, Z.:Real-Time Flash
Translation Layer for NAND Flash Memory Storage Sys-
tems, In Proceedings of the IEEE Real-Time Technol-
ogy and Applications Symposium (RTAS), Beijing, China,
16–19 April 2012.

[18] Lee, Jongmin, et al.:Real-time flash memory storage with
Janus-FTL, Proceedings of the 27th Annual ACM Sympo-
sium on Applied Computing. 2012.

[19] Chang, L.P.; Kuo, T.W.; Lo, S.:Real-time garbage collec-
tion for flash-memory storage systems of real-time embed-
ded systems, ACM Trans. Embed. Comput. Syst. 2004, 3,
661–863.

[20] Choudhuri, S.; Givargis, T.D.:Deterministic service guar-
antees for nand flash using partial block cleaning, In Pro-
ceedings of the 6th IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthe-
sis, Atlanta, GA, USA, 19–24 October 2008.

[21] Zhang, Q.; Li, X.; Wang, L.; Zhang, T.; Wang, Y.; Shao,
Z.:Optimizing Deterministic Garbage Collection in NAND
Flash Storage Systems, In Proceedings of the IEEE Real-
Time Technology and Applications Symposium (RTAS),
Seattle, WA, USA, 13–16 April 2015.

[22] Missimer, K.; West, R.:Partitioned Real-Time NAND
Flash Storage, In Proceedings of the IEEE Real-Time Sys-
tems Symposium (RTSS), Nashville, TN, USA, 11–14 De-
cember 2018.

[23] eBPF Documentation. https://ebpf.io/

what-is-ebpf/. Accessed: 2024-10-02.
[24] bpftrace. https://bpftrace.org/.Accessed: 2024-10-

02.

10



Shinnosuke Koshiba graduated from the
College of Science and Engineering,
Kanazawa University, with a major in
Electronics, Information, and Communi-
cation in 2023. He is currently enrolled
in the Master’s Program at the Graduate
School of Informatics, Nagoya University.
His research focuses on technologies to

improve the real-time performance of storage devices.

Yutaka Matsubara is an Associate Pro-
fessor at the Graduate School of Informat-
ics, Nagoya University. He received his
Ph.D. degree in Information Science from
Nagoya University in 2011. From 2009
to 2018, he was a Researcher, and then
an Assistant Professor at the Center of
Embedded Computing Systems(NCES),

Nagoya university. His research interests include real-time op-
erating systems, real-time scheduling theory, system safety and
security for embedded systems, dependability of System of Sys-
tems (SoS). He is a member of IEEE, IEICE and JSAE.

Hiroaki Takada is a professor at Insti-
tutes of Innovation for Future Society,
Nagoya University. He is also a pro-
fessor and the Executive Director of the
Center for Embedded Computing Systems
(NCES), the Graduate School of Infor-
matics, Nagoya University. He received
his Ph.D. degree in Information Science

from University of Tokyo in 1996. He was a Research Associate
at University of Tokyo from 1989 to 1997, and was a Lecturer and
then an Associate Professor at Toyohashi University of Technol-
ogy from 1997 to 2003. His research interests include real-time
operating systems, real-time scheduling theory, and automotive
embedded system. He is a fellow of JSSST, and is a member of
IEEE, ACM, IEICE, and JSAE.

11


