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Abstract

This paper proposes a new quadratic programming (QP) based inverse kinematics
(IK) method to simultaneously handle physical joint limits and whole-body colli-
sion avoidance, including self-collision and collisions with static obstacles. These
constraints may conflict with each other and result in infeasible solutions of IK,
which can subsequently produce unpredictable motions. The proposed method
incorporates an additional linear constraint to ensure that the robot state is
viable, guaranteeing the existence of solutions that do not violate the given con-
straints. Our IK method consists of two stages: the offline construction stage and
the online computation stage. In the offline construction stage, the parameters
of the proposed constraint for ensuring viable states are calculated. In the online
computation stage, the proposed constraints are updated in realtime based on the
robot’s state, and the IK is solved as a QP problem. The proposed method can
effectively handle most robots with DOFs below 10 and can also accommodate
some robots with higher DOFs under simpler constraints. This marks a signif-
icant advancement compared to previous studies. The validity of the proposed
method is illustrated through some simulation results.

Keywords: Inverse kinematics, Collision avoidance, Quadratic programming,
Mixed-integer linear programming, Viability kernel.
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1 Introduction

The inverse kinematics (IK) is one of the essential and foundational aspects of robotics.
It is the process of calculating the corresponding joint angles in the joint space based
on the given target position and orientation of the end effector in the task space. A sig-
nificant challenge in IK is managing the physical joint limits of the robot, specifically
the joint range, velocity, and acceleration limits. Pseudoinverse-based IK can strictly
satisfy all these physical limits by employing task scaling techniques, which directly
modify solutions that exceed the limits [1], or compensate the solution through pro-
jection onto the null space [2]. Nevertheless, merely satisfying physical joint limits
is typically insufficient to ensure safe motion. Collision avoidance, including the pre-
vention of both self-collisions and collisions with external obstacles, is also essential.
Optimization-based IK methods are more suitable than pseudoinverse-based methods
for addressing physical joint limits in combination with collision avoidance, as they are
capable of explicitly handling multiple inequality constraints. Collision avoidance can
be translated into various forms of constraints, such as inequality criteria involving
uniquely defined Jacobian matrices [3], differential inequalities for barrier functions
[4], and velocity field inequalities at the acceleration level [5].

Unfortunately, optimization-based IK may encounter infeasible solutions, even
when it only handles the physical joint limits [6]. For example, when a single joint
approaches its boundary at a high velocity, it may be unable to avoid surpassing the
boundary under an acceleration limit. Park et al. [6] proposed an approach to estimate
the joint angle over several control loops, allowing buffer time for joint deceleration.
This method results in stricter bounds and does not guarantee constraint compati-
bility. To provide formal guarantees of satisfying all the physical joint limits forever,
additional constraints are required to ensure that the robot’s state remains viable [7].
Starting from a viable state guarantees the existence of a sequence of solutions that
will satisfy all the constraints in the future. Various constraints to ensure viable states
are proposed based on the fact that physical joint limits are expressed as decoupled
joint constraints, which independently relate to each joint. Decre et al. [8] predicted
the future position trajectory under maximum deceleration to ensure viable states, but
their method may lead to the conflict between velocity and acceleration constraints.
Rubrecht et al. [9] employed a conservative but safe constraint to ensure viable states
to avoid all the constraint conflicts. The optimal constraints were proposed by [10] to
obtain the maximum number of viable states.

When collision avoidance and physical joint limits are considered together, com-
puting constraints to ensure viable states becomes more challenging. A general method
is viability kernel algorithm [11], which involves gridding the state space to find an
alternate set of constraints ensuring the viability of the state. Consequently, this algo-
rithm faces the curse of dimensionality, meaning the problem size grows exponentially
as the dimensionality of the state space increases. Some researchers attempted to find
more efficient ways to ensure the viability for IK. To avoid collision with obstacles,
Rubrecht et al. [9] use the minimum distance between the robot and obstacles to trig-
ger deceleration motion of joints, governed by their proposed constraints corresponding
to physical joint limits. It actually only considers joint limits, sidestepping conflicts
with collision avoidance constraints. This method was improved in [12] by adding a

2



prediction process with mixable joint deceleration to eliminate potential oscillation
during deceleration. Faroni et al. [13] developed constraints to ensure viable states
for time-varying position bounds, which defined based on a collision-free trajectory in
joint space and a task-scaling approach.

This paper proposes a new QP-based IK method to simultaneously handle physical
joint limits and whole-body collision avoidance, including self-collision and collisions
with static obstacles. In the proposed method, whole-body collision avoidance and
joint range limits are approximated as constant, linear and coupled inequalities in
joint space, referred to as compound joint constraints. A new additional constraint
to ensure the viability is employed to make the whole IK problem computationally
tractable. Our IK method consists of two stages: the offline construction stage and
the online computation stage. In the offline construction stage, the determination of
constant parameters relating to the proposed additional constraint are formalized as
mixed-integer linear programming (MILP) and QP problems. Due to the efficiency
of solving even large-scale MILP and QP problems, our method can be applied to
robots with at least 10 DOFs, whereas the classic viability kernel algorithm is typically
limited to systems with no more than 3 DOFs. In the online computation stage, the
proposed constraints are updated in realtime based on the robot’s state, and the IK
is solved as a simple QP problem.

The paper is organized as follows. Section 2 provides mathematical preliminaries
and the problem formulation. Section 3 gives the derivation of the constraints to ensure
viable states. Section 4 describes the whole procedure of the proposed IK method.
Section 5 validates the proposed IK by numerical simulations. Finally, Section 6 draws
the concluding remarks.

2 Preliminaries

2.1 Mathematical Preliminaries

Throughout this paper, R and Z denote the sets of all real numbers and integers,
respectively, R>0 and R≥0 denote the sets of all positive and non-negative real num-
bers, respectively, and Z>0 and Z≥0 denote the sets of all positive and non-negative
integers, respectively. Inequalities between vectors are interpreted element-wise. The
operator � denotes the element-wise multiplication of vectors, and min(), max(),
and

√
() applied to vectors are read as element-wise functions. The bold-face 0 and 1

represent the vector of zeros and ones with appropriate dimensions, respectively.
For conciseness, we define the following functions:

H(a) , {x ∈ Rn | − a ≤ x ≤ a} (1a)

β(v,V ) , [β(v1, V1), · · · , β(vn, Vn)]T (1b)

β(v, V ) ,

 ∅ if v > V
1 if v = V
0 if v < V,

(1c)
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where a ∈ Rn
≥0, v ∈ Rn, V ∈ Rn, v ∈ R, and V ∈ R≥0. With a positive definite

matrix W ∈ Rn×n, the weighted Euclidean norm ‖z‖W of z ∈ Rn is defined as

‖z‖W ,
√
zTWz.

This paper deals with a second-order system whose state and input are [qT , q̇T ]T ∈
R2n and q̈ ∈ Rn, respectively, where q ∈ Rn. To discuss the problems in the discrete-
time domain, we assume that the discrete-time counterparts of q, q̇, and q̈ have the
following relations:

qk = qk−1 + T (q̇k−1 + q̇k)/2 (2a)

q̇k = q̇k−1 + T q̈k (2b)

where k ∈ Z≥0 denotes the discrete-time index and T is the sampling interval. We
also define the following map F based on (2a):

F(q, q̇, C) ,

{
q̇∗

∣∣∣∣∣
[
q + T (q̇ + q̇∗)/2

q̇∗

]
∈ C

}
. (3)

Here, C can be a subset of the state space R2n. The following relations can be given
due to the definition (3) of F :

(2a) ∧ q̇k ∈ F(qk−1, q̇k−1, C)⇒ [(qk)T , (q̇k)T ]
T ∈ C (4a)

q̇k ∈
(
F(qk−1, q̇k−1, C1) ∩ F(qk−1, q̇k−1, C2)

)
⇔ q̇k ∈ F(qk−1, q̇k−1, C1 ∩ C2) (4b)

q̇k ∈
(
F(qk−1, q̇k−1, C1) ∪ F(qk−1, q̇k−1, C2)

)
⇔ q̇k ∈ F(qk−1, q̇k−1, C1 ∪ C2) (4c)

As revealed by (4a), F(qk−1, q̇k−1, C) provides all possible velocities q̇k for states

within C that are reached from [(qk−1)T , (q̇k−1)T ]
T

.
By observing the definition (3) of F , one can see that when a set C and a constant

q̂ ∈ Rn are given, all the states [(qk−1)T , (q̇k−1)T ]
T

satisfying

q̂ = qk−1 + T q̇k−1/2 (5)

will cause the same F(qk−1, q̇k−1, C). From a geometric perspective, (5) indicates
the intersection of hyperplanes in R2n state space. On the other hand, obtaining
F(qk−1, q̇k−1, C) can be achieved by substituting (2a) into the expression for C and
solving it. Geometrically, this corresponds to finding the intersection point between
the hypersurface of the boundary of C and the hyperplanes associated with

q̇k = (2/T )(qk − q̂), (6)

which is obtained by replacing qk−1 and q̇k−1 in (2a) with q̂ based on (5). Therefore,

when q̂ is given, every state [(qk−1)T , (q̇k−1)T ]
T

satisfying (5) will reach the state
satisfying (6) in the next timestep. For a one-DOF system, graphically obtaining
F(qk−1, q̇k−1, C) can be described as follows, which is also illustrated in Fig. 1:

4



Fig. 1 Illustration of obtaining F(qk−1, q̇k−1, C), where [qk−1, q̇k−1]T ∈ R2. The yellow area repre-
sents C, while the blue dotted and dash-dotted lines correspond to (5) and (6), respectively. In the
case of this figure, the vertical coordinates of intersection points between the blue dash-dotted line
and the boundary of C are y1 and y2, which determine F(qk−1, q̇k−1, C) as {q̇k|y1 ≤ q̇k ≤ y2}.

1. Drawing a line with the slope of −2/T through (qk−1, q̇k−1) and intersecting it with
the horizontal axis to obtain (q̂, 0). This line corresponds to (5).

2. According to (6), another line with the slope of 2/T can be plotted by passing
through the obtained point (q̂, 0).

3. Intersecting the line obtained in the previous step with the boundary of C to obtain
all the intersection points · · · , (xi, yi), · · · . Then, F(qk−1, q̇k−1, C) is determined by
the vertical coordinates yi of these intersection points.

2.2 Viability Theory

Viability theory [7] is an area of mathematics to study dynamical systems under
various constraints that are imposed on their state and inputs at every moment. In
this paper, the state and the input are subject to the constraint [qT , q̇T ]T ∈ X ∧ q̈ ∈ A
where X is a subset of the state space and A is a subset of the input space. According
to the viability theory, a state [(q∗)T , (q̇∗)T ]T is said to be viable if there exists a
temporal pattern of q̈ ∈ A that keeps the state within X forever once it starts from
[(q∗)T , (q̇∗)T ]T . The set of all viable states can be formally written as

Kc(A,X ) ,

{[
q∗

q̇∗

]
∈ X

∣∣∣ ∃q̈ : R≥0 → A s.t.

[
q(0)
q̇(0)

]
=

[
q∗

q̇∗

]
∧
[
q(t)
q̇(t)

]
∈ X ∀t ∈ R≥0

}
. (7)
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Fig. 2 Illustration of the subset X of the state space, the viability kernel K(A,X ) and an auxiliary
viability set V.

Here, Kc(A,X ) can be said to be the viability kernel of the second-order integrator
on the set X under the constraint q̈ ∈ A. Based on (2), we can define a discrete-time
analogue K of the viability kernel Kc as follows:

K(A,X ) ,
{[

q∗

q̇∗

]
∈ X | ∃{q̈k ∈ A}k∈Z≥0

s.t.[
q0

q̇0

]
=

[
q∗

q̇∗

]
∧ (2) ∧

[
qk

q̇k

]
∈ X ∀k ∈ Z≥0

}
. (8)

It should be noted that Kc(A,X ) ⊆ X and K(A,X ) ⊆ X are always satisfied by
definition.

The viability kernel K(A,X ) is commonly challenging to obtain. One approach is
to compute a conservative approximation (a subset) of K(A,X ). We consider using
another set V to trim X so that the set V ∩X is a subset of K(A,X ), as illustrated in
Fig. 2. We name such a set V, which satisfies

V ∩ X ⊆ K(A,X ) ⊆ X , (9)

as an auxiliary viability set corresponding to X and A. There can be various methods
to derive an auxiliary viability set. In this paper, we consider a set V∗ whose represen-
tation includes unknown parameters. These parameters are then determined on the
basis of the following lemma to ensure that V∗ serves as an auxiliary viability set:
Lemma 1. Consider the discrete-time system (2) and subsets A ⊆ Rn, X ⊆ R2n, and
V∗ ⊆ R2n. Assume that the following condition holds:

∀[qT , q̇T ]T ∈ (V∗ ∩ X ), ∃q̈ ∈ A (10a)

s.t. (q̇ + T q̈) ∈ F (q, q̇,V∗) (10b)

∧ (q̇ + T q̈) ∈ F (q, q̇,X ) , (10c)

then V∗ serves as an auxiliary viability set under X and A.
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Proof. According to (2), (4a) and (4b), if (10) is satisfied, then ∀k ∈ Z>0 and
∀[(qk−1)T , (q̇k−1)T ]T ∈ (V∗ ∩ X ), there exists q̈k ∈ A such that [(qk)T , (q̇k)T ]T ∈
(V∗ ∩ X ). Thus, every state in V∗ ∩ X is viable as indicated by (8), which implies
V∗ ∩X ⊆ K(A,X ). This confirms that V∗ serves as an auxiliary viability set under X
and A due to (9).

2.3 Problem Formulation

Consider a robot with n DOFs, and let q ∈ Rn be the joint variable vector of the
robot. Let r : Rn → Rl be the forward kinematics function that maps the joint
variable vector q to a task-space variable vector p ∈ Rl. Let pd ∈ Rl be a desired
task-space variable vector. We assume that both pd and q are functions of time t. We
here consider the problem to determine q or either of its derivatives so that p = r(q)
should track the desired task-space vector pd as close as possible in some sense under
various constraints.

The pure inverse kinematics (IK) problem is the problem to solve the following
nonlinear equation with respect to q:

pd = r(q) (11)

Directly solving the pure IK (11) at every moment, however, may be practically incon-
venient because (11) may not have solutions when pd is not feasible. Moreover, even
if the pure IK (11) has a solution q, it may be outside the physical motion limits of
the joints, which can be described in the following form:

qmin ≤ q ≤ qmax (12)

where qmin ∈ Rn and qmax ∈ Rn. In addition, there may be other various geometric
constraints on the robot, including contact with the external environment and self-
collisions. Such geometric constraints can generally be written in the following form:

g(q) ≥ 0. (13)

Here, g : Rn → R is a function that returns the minimum of the distances from all
potential collisions, which is negative if there is a collision or a penetration.

In order to track pd by r(q), we also need to care about the joint velocity and joint
acceleration, which should satisfy constraints of the following form:

q̇ ∈ H(vlim) (14a)

q̈ ∈ H(alim) (14b)

where vlim ∈ Rn
>0 and alim ∈ Rn

>0 are the vectors of velocity and acceleration limits,
respectively. Moreover, the state [qT , q̇T ]T should be kept viable, in the sense that it
should remain satisfying the constraint (12)∧(13)∧(14). The viability condition can
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be written as follows:

[qT , q̇T ]T ∈ Kc

(
H(alim),X

)
(15)

where

X , {[qT , q̇T ]T |(12)∧(13)∧(14a)}. (16)

Because the condition (15) implies (12)∧(13)∧(14a), we can see that (14b) ∧ (15) is
the constraint that should be imposed on q and its time derivatives.

Under these constraints, we consider determining q and its derivatives so that they
satisfy the following:

τJ(q)q̇ − (pd − r(q)) ≈ 0 (17)

where J(q) , ∂r(q)/∂q ∈ Rl×n. As long as (17) is satisfied, it becomes τ ṙ(q)+r(q) ≈
pd, which means that r(q) would track pd with the lag of the time constant τ . We
refer to this problem also as an IK problem, in the same light as previous studies such
as [14, 15].

In the discrete-time domain, we assume that q and its derivatives are connected
with one another by (2). Then, we need to obtain q̇k that satisfies (17) under the
constraints (14b) and (15), whose discrete-time counterparts are

(q̇k − q̇k−1)/T ∈ H(alim) (18a)

[(qk)T , (q̇k)T ]T ∈ K
(
H(alim),X

)
. (18b)

That is, the IK can be formulated as the following optimization problem:

minimize
q̇k

‖Jk−1q̇k − bk−1‖2W1
+ ‖q̇k‖2W2

(19a)

s.t. q̇k ∈ F
(
qk−1, q̇k−1,K(H(alim),X )

)
(19b)

(q̇k − q̇k−1)/T ∈ H(alim) (19c)

where W1 ∈ Rl×l and W2 ∈ Rn×n are symmetric positive definite matrices and

Jk−1 , J(qk−1) ∈ Rl×n (20a)

bk−1 , (pd − r(qk−1))/τ ∈ Rl. (20b)

Here, the second term of (19a) is intended to reduce the velocity q̇k if some redundancy
remains even after the first term becomes small enough, and (19b) ensures that (18b)
is met according to (4a).

The problem (19) is not convenient because it involves the nonconvex constraint
(13) in X . Therefore, this paper approximates the constraint (12)∧(13) by a compound
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joint constraint as

Aq ≤ q̃lim, (21)

which ensures {q|(21)} ⊆ {q|(12) ∧ (13)}. Here, A ∈ Rm×n and q̃lim ∈ Rm. Such an
approximation can be derived by approaches proposed in, e.g., [16] and [17]. Based
on the linear approximation (21) of the non-convex constraint (12) ∧ (13), now we
approximate the set X by X ∗ defined as follows:

X ∗ , {[qT , q̇T ]T |(21)∧(14a)} ⊆ X . (22)

In order to deal with the set K(H(alim),X ) appearing in (19b), which is not easyly
obtained, we consider replacing it by a conservative approximation using the auxiliary
viability set V introduced in Section 2.2. The combination of these approximation
results in the following:

V ∩ X ∗ ⊆ K(H(alim),X ∗) ⊆ K(H(alim),X ). (23)

Thus, the original IK problem (19) can be approximated in the following form:

minimize
q̇k

‖Jk−1q̇k − bk−1‖2W1
+ ‖q̇k‖2W2

(24a)

s.t. q̇k ∈ F(qk−1, q̇k−1,V) (24b)

q̇k ∈ F(qk−1, q̇k−1,X ∗) (24c)

(q̇k − q̇k−1)/T ∈ H(alim). (24d)

Here, (24c) is a linear constraint of q̇k and (24b)∧(24c) ensures that the obtained state

[(qk)T , (q̇k)T ]
T

is within K(H(alim),X ) due to (4b) and (23). The remaining problem,
which will be discussed in the subsequent sections, is to derive an appropriate V that
transforms the problem (24) into a QP problem.

3 Derivation of Auxiliary Viability Set

3.1 Auxiliary Viability Set for One-dimensional Position
Constraint

This section discusses the simplest case that includes a single joint subject to angle,
velocity, and acceleration constraints, which can be written as follows:

q ≤ qlim (25a)

q̇ ∈ H(vlim) (25b)

q̈ ∈ H(alim). (25c)

Here, qlim ∈ R, vlim ∈ R>0, and alim ∈ R>0.
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The viability kernel of this discrete system can be written as
K
(
H(alim), {(25a)∧(25b)}

)
, and, because of the simplicity of the system, it can be

analytically obtained as follows:

Kp , K
(
H(alim), {(25a)∧(25b)}

)
= Vp(qlim, alim) ∩ {(25a)∧(25b)} (26)

where

Vp(qlim, alim) ,

{
[q, q̇]T

∣∣∣ q̇ ≤√2alim max(0, qlim − q)
}
. (27)

This expression is derived based on the requirement that the angle q must stop with
full deceleration (i.e., q̈ = −alim) to avoid exceeding the limit qlim. It should be empha-
sized that the set Vp(qlim, alim) serves as an auxiliary viability set due to (26). The
illustration of Kp and Vp(qlim, alim) are shown in Fig. 3(a).

Since Vp(qlim, alim) serves as an auxiliary viability set under the constraints (25),
it can be applied in the IK problem (24) for a system constrained solely by physical
joint limits (12) ∧ (14), which can be decoupled into the combination of (25). In this
case, each component of the IK solution must satisfy

q̇k ∈ F(qk−1, q̇k−1,Vp(qlim, alim)) (28a)

q̇k ∈ F(qk−1, q̇k−1, {(25a)∧(25b)}), (28b)

which are derived according to (24b) and (24c), respectively. According to the
definition (3) of F , the two conditions can be obtained as

q̇k ≤
√

2alim max(0, qlim − (qk−1 + T (qk−1 + q̇k)/2) (29a)

q̇k ≤ (2/T )(qlim − qk−1 − T q̇k−1/2) (29b)

q̇k ∈ H(vlim). (29c)

Here, (29a) and (29b)∧(29c) are derived from (28a) and (28b), respectively, and (29a)
can be solved analytically according to Appendix A:

q̇k ≤ gp(qk−1, q̇k−1, qlim, alim), (30)

where gp : R× R× R× R>0 → R≥0 is defined as

gp(q, q̇, qlim, alim) ,(
−alimT +

√
(alimT )2 + 8alim max(0, qlim − q − T q̇/2)

)/
2. (31)

Here, the output of gp is always nonnegative due to the term of max(0, ∗). Please
notice that (29b), (29c) and (30) are linear inequalities of q̇k, thereby transforming
the problem (24) into a QP problem.

10



Fig. 3 (a) The illustration of Kp and K1. The yellow area represents K1, and the cyan area combining
yellow area indicates Kp. The dashed lines of different colors express the different boundaries of sets,
with black indicating {(25a) ∧(25b)}, blue indicating Vp(qlim, alim), and red indicating V1(qlim, alim),
respectively. (b) A state satisfying qk−1 + T q̇k−1/2 ≤ qlim (indicated in blue) can come to a stop at
the next timestep (i.e., q̇k = 0) when required, while a state with qk−1+T q̇k−1/2 > qlim (indicated in
red) cannot. The yellow area expresses Kp. The green line in (a) and (b) corresponds to the boundary
of B defined in (32).

Unfortunately, applying (29b), (29c) and (30) in (24) may lead to a numerical issue.
A state [qk−1, q̇k−1]T belonging to the following set always causes (29b) into q̇k < 0:

B ,
{

[q, q̇]T | q + T q̇/2 > qlim
}
, (32)

where the boundary of B is a line with the slope of −2/T passing through (qlim, 0),
as shown in Fig. 3(a) and (b). Therefore, a state [qk−1, q̇k−1]T within B cannot come
to a stop at the next timestep (i.e., q̇k = 0) when required, which can be graphically
shown in Fig. 3(b) based on the discussion in Section 2.2. This may cause the obtained
solution to oscillate around qlim, which is also reported in [10], and is illustrated in
Section 5.1.

To address this issue, one approach is to ensure that the states will never belong
to B. For this purpose, we define a new set by shifting Vp(qlim, alim) to the left by
T 2alim/8, which is given by

V1(qlim, alim) , Vp(qlim − T 2alim/8, alim). (33)

As shown in Fig. 3(a), the new set is still an auxiliary viability set due to K1 ⊆ Kp,
where

K1 , V1(qlim, alim) ∩ {(25a)∧(25b)}. (34)

The boundary of B is tangent to the boundary of V1(qlim, alim), ensuring that K1∩B =
∅. Consequently, V1(qlim, alim) is the closest shifted set derived from Vp(qlim, alim) that
can resolve the aforementioned issue. Since the shift magnitude T 2alim/8 is very small
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in practice, K1 typically serves as a close approximation to Kp. The corresponding
condition instead of (30) is given by

q̇k ≤ g1(qk−1, q̇k−1, qlim, alim) (35)

where g1 : R× R× R× R>0 → R≥0 is defined as

g1(qk−1, q̇k−1qlim, alim) , gp(qk−1, q̇k−1, qlim − T 2alim/8, alim). (36)

In conclusion, (24b) ∧ (24c) corresponding to K1 can be obtained as

q̇k ∈ F(qk−1, q̇k−1,V1(qlim, alim)) ∧ (28b) (37a)

⇐⇒ (35) ∧ ((29b) ∧ (29c)) (37b)

⇐⇒ (35) ∧ (29c). (37c)

Here, (37b) can be simplified to (37c) as proved in Appendix B, under the condition
qlim − qk−1 − T q̇k−1/2 ≥ 0. This condition always holds when [qk−1, q̇k−1]T ∈ K1

because of K1 ∩ B = ∅.

3.2 Auxiliary Viability Set for Single Row of Compound Joint
Constraint

In this section, we consider (14) combining one row of the compound joint constraint
(21) as the hard joint constraints:

cTq ≤ q̃lim (38a)

q̇ ∈ H(vlim) (38b)

q̈ ∈ H(alim). (38c)

Here, c ∈ Rn and q̃lim ∈ R. Note that (38a) can be interpreted as the one-dimensional
constraint (25a) because it actually limits the scalar cTq. Based on this fact, a new
set in R2n can be constructed by extending V1(q̃lim, ãlim) in Section 3.1 as follows:

V2(q̃lim, ãlim) ,{[qT , q̇T ]T |[cTq, cT q̇]T ∈ V1(q̃lim, ãlim)}. (39)

Here, ãlim ∈ R>0 is a constant to be determined and V2(q̃lim, ãlim) is the set of states
ensuring that cT q̇ can reduce to 0 before cTq reaching q̃lim − ãlimT 2/8 under cT q̈ =
−ãlim. In other words, (38a) and V2 can be derived from (25a) and V1 by substituting
q, q̇, qlim and alim with cTq, cT q̇, q̃lim and ãlim, respectively. Thus, applying F for V2
and (38a) can be derived as follows by referencing the derivation of (35) and (29b),
respectively:

cT q̇k ≤ g1(cTqk−1, cT q̇k−1, q̃lim, ãlim) (40a)

cT q̇k ≤ (2/T )(q̃lim − cTqk−1 − TcT q̇k−1/2). (40b)
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Please notice that (40a)∧(40b) can be simplified to (40a) for the same reasons as (37).
Finally, the constraints corresponding to F(qk−1, q̇k−1,V2(q̃lim, ãlim)∩{(38a)∧(38b)})
can be given by

(40a) ∧ q̇k ∈ H(vlim). (41)

To apply (41) in IK (24), ãlim must be determined to ensure that V2(q̃lim, ãlim)
serves as an auxiliary viability set under (38). This requires the following condition to
be satisfied, as stated in Lemma 1:

∀[qT , q̇T ]T ∈ (V2(q̃lim, ãlim) ∩ {(38a) ∧ (38b)}), ∃q̈ ∈ H(alim) (42a)

s.t. cT q̈ ≤ (g1(cTq, cT q̇, q̃lim, ãlim)− cT q̇)/T (42b)

∧ (−vlim − q̇)/T ≤ q̈ ≤ (vlim − q̇)/T. (42c)

Here, (42b)∧(42c) is obtained by substituting (2b) into (41). Satisfaction of the above
condition requires verifying the existence of q̈ by traversing every [qT , q̇T ]T specified
in (42a). This traversal can be represented as a two-level nested loop: the outer loop
iterates over q̇ ∈ H(vlim), while the inner loop traverses each q that satisfies

cTq ≤ q̃lim ∧ [cTq, cT q̇]T ∈ V1(q̃lim, ãlim). (43)

Here, the second condition in (43) is rewritten from [qT , q̇T ]T ∈ V2(q̃lim, ãlim)
according to the definition of V2.

Due to the complexity of this nested loop, it needs to be equally simplified. Since q̇
is within H(vlim) in the outer loop, the left-hand side and right-hand side of (42c) are
always nonpositive and nonnegative, respectively. When cT q̇ < 0, the right-hand side
of (42b) will always be positive because the output of g1 is nonnegative. This implies
that (42) is always satisfied in the case of q̈ = 0 when cT q̇ < 0. Thus, the outer loop
only need to iterate over q̇ ∈ D to verify the existence of q̈, where

D , {q̇ ∈ H(vlim)| cT q̇ ≥ 0}. (44)

Furthermore, as shown in Appendix C, the following condition holds for all q satisfying
(43) when cT q̇ ≥ 0:

g1(cTq, cT q̇, q̃lim, ãlim) ≥ max(0, cT q̇ − ãlimT ). (45)

During the inner loop that traverses each q that satisfies (43), if the following condition
is met:

cT q̈ ≤ (max(0, cT q̇ − ãlimT )− cT q̇)/T, (46)

then (42b) is always satisfied due to (45). As a result, the entire inner loop can be
omitted because both (46) and (42c) are independent of q. In conclusion, the necessary
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and sufficient condition of (42) can be given by

∀q̇ ∈ D, ∃q̈ ∈ H(alim) (47a)

s.t. cT q̈ ≤ −cT q̇/T if 0 ≤ cT q̇ < ãlimT (47b)

∧ cT q̈ ≤ −ãlim if cT q̇ ≥ ãlimT (47c)

∧ (−vlim − q̇)/T ≤ q̈ ≤ (vlim − q̇)/T. (47d)

Here, (47b) ∧ (47c) is rewritten from (46).
Even though (47) is a simplified version of (42), determining ãlim remains challeng-

ing. Thus, we further simplify (47) to the following sufficient condition of it, based on
the fact that cT q̈ ≤ −ãlim < −cT q̇/T holds in (47b) due to cT q̇ < ãlimT :

∀q̇ ∈ D, ∃q̈ ∈ H(alim) (48a)

s.t. − cT q̈ ≥ ãlim (48b)

∧ (−vlim − q̇)/T ≤ q̈ ≤ (vlim − q̇)/T. (48c)

Here, (48b) is a more conservative condition of (47b) ∧ (47c). Please notice that as T
gradually decreases to 0, the conditions (47b) ∧ (47c) and (48b) converge until they
serve as the same condition. This convergence indicates that when T is sufficiently
small, (48) can be regarded as both a necessary and sufficient condition for (47).

Since (48) is a sufficient condition for (42) and (47), the value of ãlim ensuring them
can be determined based on (48). For each q̇ in (48), ãlim must be smaller than the
maximum of −cT q̈ with the condition q̈ ∈ H(alim) ∧ (48c) to ensure the existence of
a feasible q̈. Since a larger ãlim provides better deceleration performance, ãlim should
be chosen as the maximum of −cT q̈ for each q̇. Such process will be considered while
traversing all q̇ ∈ D to determine the final value ãlim, which can be described by the
following linear bilevel optimization problem:

ãlim = min
q̇∈D

(
max

q̈∈H(alim)
−cT q̈

s.t. (−vlim − q̇)/T ≤ q̈ ≤ (vlim − q̇)/T

)
. (49)

This problem possesses a unique structure that simplifies its resolution compared to
general problems. Since the optimal value of the inner maximization problem in (49)
can be explicitly obtained, (49) can be derived as

ãlim = min
q̇∈D

(
n∑

i=1

{
−ci max

(
(−vlimi − q̇i)/T,−alimi

)
if ci ≥ 0

−ci min
(
(vlimi − q̇i)/T, alimi

)
if ci < 0

)
(50a)

= min
q̇∈D

(
n∑

i=1

|ci|min
(
(vlimi + ciq̇i/|ci|)/T, alimi

))
(50b)

= min
q̇∈D

(
n∑

i=1

min
(
(|ci|vlimi + ciq̇i)/T, |ci|alimi

))
. (50c)
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Comparing the three equations in (50), the form of (50a) is overly complex, while
(50b) may encounter zero division errors when ci ≈ 0. Thus, (50c) is chosen as the
basis for further derivation.

The above problem (50c) can be further reformulated into a MILP problem:

ãlim = min
z,q̇∈D,δ∈{0,1}n

1Tz (51a)

s.t. z ≤ |c| � alim (51b)

z ≥ |c| � alim −M(1− δ) (51c)

z ≤ (|c| � vlim + c� q̇)/T (51d)

z ≥ (|c| � vlim + c� q̇)/T −Mδ. (51e)

Here, z ∈ Rn and δ ∈ {0, 1}n are auxiliary variables and M ∈ R is a large constant
satisfying the following condition for all q̇ ∈ D:

|c| � alim −M1 ≤ (|c| � vlim + c� q̇)/T (52a)

∧ (|c| � vlim + c� q̇)/T −M1 ≤ |c| � alim. (52b)

In this paper, we simply determine M as the maximum element of the vector(
|c| �max(alim, 2vlim/T − alim)

)
to satisfy (52) for all q̇ ∈ D. With this appropri-

ately determined M , the constraints (51b)∼(51e) ensure that the obtained zi equals
to the inner minimum term min(∗) in (50c) for every i form 1 to n. More precisely,
(51b)∼(51e) lead to zi = (|ci|vlimi + ciq̇i)/T ∧ zi ≤ |ci|alimi when δi = 0, and become
zi = |ci|alimi ∧ zi ≤ (|ci|vlimi + ciq̇i)/T when δi = 1. The MILP problem (51) can be
efficiently solved by various optimization solvers, such as SCIP [18] and GLPK [19].

3.3 Auxiliary Viability Set for Entire Compound Joint
Constraint

Finally, we consider the general case, which is the constraints discussed in Section 2.3:

Aq ≤ q̃lim (53a)

q̇ ∈ H(vlim) (53b)

q̈ ∈ H(alim). (53c)

One can see that the only difference between the above constraints and the case of
Section 3.2 is that (53a) is composed of multiple (38a). Thus, V2 defined by (39) can
be extended as follows corresponding to (53):

V3(q̃lim, ãlim) , {[qT , q̇T ]T | [Aiq,Aiq̇]T ∈ V1(q̃limi , ãlimi ), i = 1, · · · ,m}. (54)

Here, Ai ∈ R1×n is the i-th row of A, and q̃limi and ãlimi are the i-th compo-
nent of q̃lim and ãlim, respectively, where ãlim ∈ Rm

>0 is a constant vector to be
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determined. By referencing the derivation of (41), the constraints corresponding to
F(qk−1, q̇k−1,V3(q̃lim, ãlim ∩ {(53a)) ∧ (53b)}) can be given by

Aiq̇
k ≤ g1(Aiq

k−1,Aiq̇
k−1, q̃limi , ãlimi ), i = 1, · · · ,m (55a)

∧ q̇k ∈ H(vlim). (55b)

To ensure V3(q̃lim, ãlim) serves as an auxiliary viability set, ãlim must be deter-
mined to satisfy the following condition according to Lemma 1:

∀[qT , q̇T ]T ∈ (V3(q̃lim, ãlim) ∩ {(53a)) ∧ (53b)}), ∃q̈ ∈ H(alim) (56a)

s.t. Aiq̈ ≤ (g1(Aiq,Aiq̇, q̃
lim
i , ãlimi )−Aiq̇)/T, i = 1, · · · ,m (56b)

∧ (−vlim − q̇)/T ≤ q̈ ≤ (vlim − q̇)/T. (56c)

Here, (56b)∧(56c) is obtained by substituting (2b) into (55). This condition is challeng-
ing to ensure fully for all cases. To address this, we propose a method for determining
ãlim that satisfies (56) in most practical scenarios, even for high-dimensional cases
such as m = 1000 ∧ n = 10. The proposed method is based on the discussions in
Section 3.2. We define another constant vector ãlim

u ∈ Rm, where each component ãlimui
is computed by substituting the corresponding AT

i into c of (51). It is evident that
(42) is a necessary condition for (56). Thus, ãlim

u is an upper bound for ãlim, as only
values of ãlim smaller than ãlim

u can potentially satisfy (56).
Unlike (42), the condition (56) requires accounting for multiple constraints in (56b).

Nevertheless, for any given [qT , q̇T ]T , verifying the existence of a feasible q̈ does not
necessitate checking all constraints in (56b). Actually, only a limited number of specific
combinations of constraints need to be considered. When Aiq is far from q̃limi , the
function g1 returns a large positive number, rendering the corresponding constraint
negligible. AsAiq approaches q̃limi , the right-hand side of the corresponding constraint
in (56b) decreases until it reaches the minimum −ãlimi . In practice, each constraint
in (56b) only affect the solution when the corresponding Aiq is very close to q̃limi .
Therefore, the combination of multiple constraints that need to be considered can
often be identified by the vertices of the polytope associated with (53a).

Furthermore, if each constraint in (56b) is ensured to be individually compatible
with (56c), then their combination is typically also compatible with (56c). This fact
indicates that (56c) can be neglected when ãlim ≤ ãlim

u is satisfied. This is because ãlim
u

ensures that any single constraint in (56b) holds under (56c), as a result of satisfying
(42). In conclusion, for most practical scenarios, we can assume that the following
condition is the sufficient condition for (56):

∀s ∈ S, ∃q̈ ∈ H(alim) (57a)

s.t. s� (Aq̈ + ãlim) ≤ 0 (57b)

ãlim ≤ ãlim
u (57c)
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Algorithm 1 Calculation for constant ãlim

Require: A ∈ Rm×n, q̃lim ∈ Rm,vlim ∈ Rn
>0,a

lim ∈ Rn
>0

ε := 10−5

S := {}
ãlim
u := ZERO VECTOR(m)

for i = 1 to m do
ãlimui := MILP(c = AT

i ,v
lim,alim) . Eq. (51)

s := ZERO VECTOR(m)
for all q̂ ∈ VERT({Aq ≤ q̃lim}) do

for i = 1 to m do
if Aiq̂ ≥ q̃limi − ε then

si := 1
else

si := 0
PUSH(S, s)

ãlim := QP(A,alim, ãlim
u ,S) . Eq. (59)

return ãlim

where

S , {s ∈ {0, 1}m|q̂ ∈ vert({Aq ≤ q̃max}), s = β(Aq̂, q̃lim)}. (58)

Here, the set vert() includes all the vertices of the given polytope, which can be
efficiently computed using several methods, such as the double-description method
[20]. For the most of practical cases with small T and relative large alim, (57) can
ensure that (56) holds.

An appropriate ãlim satisfying (57) can be obtained by solving the following QP
problem:

minimize
ãlim,c̃,··· ,ˆ̈qi,···

‖ãlim − ãlim
u ‖2Wa

+ ‖c̃− c0‖2wc̃
(59a)

s.t. 0 ≤ c̃ ≤ c0 (59b)

c̃ãlim
u ≤ ãlim ≤ ãlim

u (59c)

∀s ∈ S,{
ˆ̈qi ∈ H(alim)

s� (Aˆ̈qi + ãlim) ≤ 0.

(59d)

(59e)

Here, each ˆ̈qi ∈ Rn corresponds to one element of S, c̃ ∈ R≥0 represents a scal-
ing factor for ãlim

u , c0 ∈ R>0 is a positive constant that is less than 1, Wa ,
diag([· · · , 1/‖Aj‖2, · · · ]T ) ∈ Rm×m is a weight matrix making the obtained ãlim opti-
mal on the actual deceleration effect, wc̃ ∈ R>0 should be a relatively large value,
such as 1000. The left-hand side of (59c) can be consider as a soft constraint to avoid
obtaining extremely small elements of ãlim.
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Fig. 4 Block diagram of the proposed IK.

In conclusion, the determination of the constant vector ãlim is summarized in Algo-
rithm 1. With this appropriate ãlim, V3(q̃lim, ãlim) is ensured to serve as an auxiliary
viability set, which is expected for IK (24).

4 Procedure of Proposed IK Method

The block diagram of the proposed IK is shown in Fig .4. According to the discussion
of Section 3, applying V3(q̃lim, ãlim) to IK (24) results in the following QP problem:

minimize
q̇k

‖Jk−1q̇k − bk−1‖2W1
+ ‖q̇k‖2W2

s.t. Aq̇k ≤ qk−1A (60a)

qk−1 ≤ q̇k ≤ qk−1, (60b)

where

qk−1A , −T ãlim/2 +
√

2ãlim �max (T 2ãlim/8, q̃) (61a)

q̃ , q̃lim −Aqk−1 − TAq̇k−1/2 (61b)

qk−1 , max(−vlim, q̇k−1 − Talim) (61c)

qk−1 , min(vlim, q̇k−1 + Talim). (61d)
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Here, (60a) ∧ (60b) is reformulated from (24d) ∧ (55), in which (60a) is the specific
matrix form of (55a).

The whole method consists of two stages: the offline construction stage and the
online computation stage. In the offline construction stage, the constant vector ãlim

is obtained through Algorithm 1. In the online computation stage, the parameters of
the constraints and Jk−1, bk−1 in the objective function of (60) are updated based
on [(qk−1)T , (q̇k−1)T ]T in every loop. One can see that the parameters of (60a) and
(60b) can be calculated by simple equations (61), enabling the rapid formulation of
the QP in realtime applications. Since the proposed IK method is formulated as a QP
with simple linear constraints, it can be easily extended or integrated with additional
constraints and objective function terms to address more complex tasks.

5 Numerical Simulation

5.1 Numerical Result 1

We conducted six numerical simulation to compare the proposed method with two
related works [9] and [10] on a 1-DOF robot under the sampling interval T = 0.01s and
0.1s, respectively. The hard joint constraints of the robot are set to q ≤ 1, q̇ ∈ H(3),
and q̈ ∈ H(12). The target position is given as 1.1m, which lies outside the robot’s
motion range. The initial state of the robot is [0.02, 0]T .

The results of simulation are shown in Fig. 5. In the phase portraits of Fig. 5(a) and
(b), the yellow area indicates the corresponding viability kernel of the robot. It can be
seen that all three methods have high approximation accuracy to the viability kernel
under small T , e.g., 0.01s, but the accuracy loss of the method of [9] is much greater
than that of other two methods at large T , e.g., 0.1s. In Fig. 5(c) and (d), trajectories
of position, velocity, and acceleration are given. It can be seen that the method of [10]
will cause severe oscillations of acceleration, and the acceleration strategy of method of
[9] is more conservative. The above results suggest that the proposed method ensures
high approximation accuracy regardless of the sampling interval, while also having
better numerical stability.

5.2 Numerical Result 2

We simulated the proposed method with a 2-DOF robot, whose both lengths of arms
are 1m. The simulation result are shown in Fig. 6, in which the robot is indicated by
purple lines and green circles, the end-effector is denoted by cyan circle, the target
position is shown by red point, and the trajectory of the end-effector are expressed
by blue solid line. In Fig. 6, the black solid line corresponds to the obstacles, which
are 1m and 0.5m tall in Y direction, and its distance between the base point of the
robot are 1m and 1.5m in X direction, respectively. The physical joint limits of this
robot are given by [0 0]T ≤ q ≤ [π π/2]T , q̇ ∈ H([1 2]T ) and q̈ ∈ H([15 12]T ). As
illustrated by the black dashed polygon of Fig. 7(a), the compound joint constraints
ensuring collision avoidance and compliance with the joint range limit are given. The
resulting motion range of the robot’s end-effector, dictated by these compound joint
constraints, is depicted by the black dashed line in Fig. 6.
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Fig. 5 Numerical result 1. (a), (b) Phase portraits of one joint obtained by different IK methods
with T = 0.01s, and T = 0.1s, respectively. The yellow area indicates the corresponding viability
kernel of the robot. (c), (d) Trajectories of one joint obtained by different IK methods with T = 0.01s,
and T = 0.1s, respectively.

The simulation is conducted over a duration of 4 seconds. To clearly illustrate
the trajectories, the entire process is divided into 4 segments at the time points 0.5,
1.5, and 2.5 seconds. corresponding to the 4 sub-figures in Fig .6. The joint angle
trajectories are depicted in joint space in Fig. 7(a). At each time segment, a new target
position is assigned, with the initial position of the end-effector marked by solid cyan
points. The simulation results are presented in Fig. 7(b), where the red dashed lines
represent the aforementioned time points, and the dot-dashed lines correspond to the
physical joint limits of the robot. According to Fig. 7, all the given constraints are
satisfied, demonstrating the validity of the proposed IK method.
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Fig. 6 Trajectory of a 2-DOF robot of numerical result 2.

Fig. 7 (a) Trajectories of state obtained by the proposed IK method in numerical result 2. (b)
Trajectories obtained by the proposed IK method of numerical result 2.

5.3 Numerical Result 3

We measured the computation time required for the offline construction stage of the
proposed IK method on robots with DOFs ranging from 2 to 10. All necessary hard
constraints (53) were randomly generated within a predefined range. The vertices of
the polytopes associated with the position constraints (53a) were randomly distributed
on the faces of a hypercube with an edge length of π, ensuring the generated constraints
were practically realistic. The number of faces of the polytope, which is also the
number of the position constraints’ rows m was set to 2n. This order of magnitude
for m can provide a good balance between constraint complexity and approximation
accuracy for the nonlinear geometric constraints (13) in practical applications. The
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Table 1 Average computation time of the offline construction stage.

Average time [s]

n m MILP VERT QP Total

2 4 0.004747 0.000020 0.001327 0.006094

3 8 0.007952 0.000041 0.001290 0.009283

4 16 0.039792 0.000120 0.002178 0.042090

5 32 0.115859 0.000380 0.004777 0.121015

6 64 0.289074 0.003725 0.015475 0.308273

7 128 0.927218 0.075500 0.077341 1.080060

8 256 2.798633 2.519383 0.337033 5.655049

9 512 9.151099 109.216535 1.869819 120.237453

10 1024 24.749289 1530.569926 7.775779 1563.094994

velocity constraint parameter vlimi and acceleration constraint parameter alimi in (53b)
and (53c) are randomly generated within the ranges [0.5, 2] and [1, 5], respectively.

As described in Algorithm 1, the offline construction stage can be divided into
three parts: performing m iterations of MILP solving, obtaining the set of vertices
VERT of the polytopes associated with (53a) while constructing S defined in (58),
and solving a QP to determine ãlim. For each specific n, Algorithm 1 was executed
15 times, and the average computation times for the three parts were recorded and
presented in Table 1. The results indicate that the proposed algorithm can efficiently
handles high dimensional cases with up to n = 10 and m = 1024. Moreover, the results
do not imply that higher-dimensional cases are entirely infeasible. When the number
of rows of the position constraints is reduced, higher-dimensional cases (e.g., m = 100
and n = 20) can also be processed within an acceptable computation time.

6 Conclusion

This paper has proposed a QP-based IK method to simultaneously handle physical
joint limits and whole-body collision avoidance, including self-collision and collisions
with static obstacles. In the proposed method, whole-body collision avoidance and
joint range limits are approximated as a linear compound joint constraint. A sim-
ple linear constraint corresponding to the auxiliary viability set is derived to ensure
the solution of IK remains viable. For scenarios where only physical joint limits are
required, the proposed method guarantees high approximation accuracy to the corre-
sponding viability kernel while maintaining superior numerical stability compared to
previous works. In scenarios requiring collision avoidance, the proposed method effi-
ciently determines appropriate parameters to guarantee ensure the solution is viable ,
even in high-dimensional cases such as n = 10 and m ≈ 1000. This marks a significant
advancement compared to previous studies.

Nevertheless, the proposed IK method still has several areas for improvement.
The set of solution obtained by proposed method tends to be more conservative than
the viability kernel of the original problem. This conservatism arises from two main
factors: 1. The original nonlinear geometric constraints are replaced by conservative
linear compound joint constraints, where the gap between the two can sometimes
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be significant. 2. The constant vector ãlim is determined based on the most extreme
cases, making the resulting ãlim overly conservative for most other states. The first
issue can be addressed by using the union of multiple compound joint constraints
to better approximate the original nonlinear constraints. This would also require an
enhancement of the algorithm to handle the union of multiple linear constraints in
realtime. The second issue could be mitigated by allowing ãlim to vary dynamically
based on target position rather than being fixed. Moreover, the proposed method lacks
sufficient generality and is not applicable to many scenarios, including cases with large
sampling interval T and higher-dimensional cases. Addressing these limitations would
require comprehensive modifications to the algorithm.

Acknowledgements. Our source code of the proposed IK method utilizes the open-
source libraries SCIP [18], eigen-cddlib [21], CasADi [22], and OSQP [23].
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Appendix A

Lemma 2. For a > 0, b ∈ R and c > 0, the following statement holds true:

x ≤
√
amax(0, b− cx) ⇐⇒ x ≤

−ac+
√
a2c2 + 4amax(0, b)

2
(A1)

Proof.

x ≤
√
amax(0, b− cx)

⇐⇒
(
x > 0 ∧ x2 ≤ amax(0, b− cx)

)
∨ x ≤ 0

⇐⇒ x2 ≤ amax(0, b− cx) ∨ x ≤ 0

⇐⇒ (b− cx < 0 ∧ x2 ≤ 0) ∨
(
b− cx ≥ 0 ∧ x2 ≤ a(b− cx)

)
∨ x ≤ 0

⇐⇒ x2 ≤ a(b− cx) ∨ x ≤ 0

⇐⇒

(
−ac−

√
a2c2 + 4ab

2
≤ x ≤ −ac+

√
a2c2 + 4ab

2
∧ ac2 + 4b ≥ 0

)
∨ x ≤ 0

⇐⇒ x ≤
−ac+

√
a2c2 + 4amax(0, b)

2

Appendix B

Lemma 3. For a > 0, T > 0 and x ≥ 0, the following statement holds true:

q ≤ qa ∧ q ≤ qb ⇐⇒ q ≤ qa (B2)

where

qa ,
(
−aT +

√
(aT )2 + 8amax(0, x− aT 2/8)

)/
2 (B3a)

qb , (2/T )x (B3b)

Proof. The sufficient and necessary condition for the above statement is that qa ≤ qb
holds for a > 0, T > 0 and x ≥ 0.

When 0 ≤ x ≤ aT 2/8, qa is always 0, thus, qa ≤ qb is satisfied.
When x > aT 2/8,

qa − qb =
(
−aT +

√
8ax

)/
2− 2x/T

=
(

2
√

2axT 2 − aT 2 − 4x
)/

(2T ). (B4)
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According to the AM–GM inequality,

2
√

4axT 2 ≤ aT 2 + 4x. (B5)

Thus, (B4) remains negative, i.e., qa < qb, due to 2
√

2axT 2 < 2
√

4axT 2 and (B5).

Appendix C

Lemma 4. Given y ≥ 0, a > 0, T > 0 and xlim ∈ R, for all x satisfying y ≤ f(x),
the following statement holds true:

g(x) ≥ max(0, y − aT ), (C6)

where

f(x) ,
√

2amax(0, xlim − aT 2/8− x) (C7a)

g(x) ,

(
−aT +

√
(aT )2 + 8amax(0, xlim − aT 2/8− x− Ty/2)

)/
2. (C7b)

Proof. According to (C7b), the function g(x) alternates between two forms: 0 and

ga(x) ,

(
−aT +

√
8a(xlim − x− Ty/2)

)/
2, (C8)

where the selection is determined by the condition

xlim − aT 2/8− x− Ty/2 ≥ 0. (C9)

On the other hand, f(x) behaves as a concave function when f(x) > 0. The two
intersection points between y = f(x) and xlim − aT 2/8 − x − Ty/2 = 0 are given
by (xlim − 5aT 2/8, aT ) and (xlim − aT 2/8, 0). This fact implies that for all x and y
satisfying y ≤ f(x), (C9) always holds when y ≥ aT . Conversely, for 0 ≤ y < aT ,
there must exist some values of x where (C9) does not hold.

As a result, the minimum of g(x) is 0 when y < aT holds. For the case of y ≥ aT ,
g(x) turns into ga(x), and y ≤ f(x) can be rewritten as

x ≤ xlim − aT 2/8− y2/2a. (C10)

Because (C9) is always satisfied in this case, ga(x) is a monotonic decreasing function,
and its minimum value is attained when x is maximized as specified by (C10). Thus,
the minimum value of ga(x) is given by y − aT .

In conclusion, given y ≥ 0, for all x satisfying y ≤ f(x):

min g(x) =

{
y − aT if y ≥ aT
0 if y < aT,

(C11)
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which gives (C6).
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