
Data for Brain Reference Architecture of

NY24CanonicalCorticalMicrocircuitsInference
Canonical cortical microcircuits reference architecture for cognitive inference

Naohiro Yamauchia∗, Yoshimasa Tawatsujibc, Yudai Suzukibc, Kenji Doyaa, Hiroshi Yamakawabc
aOkinawa Institute of Science and Technology, Okinawa, Japan

bThe University of Tokyo, Tokyo, Japan
cThe Whole Brain Architecture Initiative, Tokyo, Japan

∗Corresponding author: Naohiro Yamauchi; naohiro.yamauchi@oist.jp

Abstract

Canonical cortical microcircuits (CCMs) is the six-layer structure preserved throughout the mam-
malian neocortex and is thought as a fundamental computational unit. This dataset reverse-engineers
CCMs and presents a computational model to achieve cognitive inference. The data consist of the
anatomical connectivity of CCMs and the functions hierarchically achieved from each uniform circuit.
First, information on the anatomical connections of CCMs was collected from seven review papers.
Next, dynamic Bayesian inference was determined as the algorithm for cognitive inference, which
CCMs can implement. Finally, we describe how top-level functions are achieved from excitatory neu-
ral populations and circuit motif based on inhibitory neural populations, assigning output semantics
to each excitatory neural population. The data are described in a brain reference architecture format
and stored in the BRA data repository. This dataset provides experimentally testable hypotheses
about neural activity patterns in cortical layers.
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1 Context

Brain Reference Architecture (BRA) is the reference architecture for software that realizes cognitive and behav-
ioral functions in a brain-like manner. The architecture primarily consists of the mesoscopic-level anatomical
data of the brain and the data of one or more functional mechanisms that are consistent with that knowl-
edge(Yamakawa, 2021). BRA consists of Brain Information Flow (BIF), which represents structural knowledge
of the brain, and Hypothetical Component Diagram (HCD)/Funciton Realization Graph (FRG), which represent
brain functionality.

The canonical cortical microcircuits (CCMs) is a conserved six-layered anatomical structure in the mam-
malian neocortex(Felleman & Van Essen, 1991; Larkum, 2013). In humans, millions of minicolumns form this
structure, functioning as presumed computational units(Maruoka, Kubota, Kurokawa, Tsuruno, & Hosoya, 2011;
Mountcastle, 1997). While there are slight variations, such as in the thickness of layer 4, the six-layer structure
is preserved across cortical regions involved in sensory processing, motor functions, and higher cognitive func-
tions(Larkum, 2013; Weiler, Wood, Yu, Solla, & Shepherd, 2008). Traditionally, information processing within
CCMs was understood as a sequential pathway: from the thalamus to layer 4, then from layer 4 to layers 2/3, and
subsequently to layer 5. However, recent studies have revealed a more complex pattern of anatomical and func-
tional connectivity, including direct thalamic projections to layer 5(Audette, Urban-Ciecko, Matsushita, & Barth,
2017; Constantinople & Bruno, 2013). Neuronal populations within CCMs are broadly classified into excitatory
and inhibitory cell types. Excitatory cells, which are distinguished by specific projection patterns, are thought
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to play a central role in computational processes and include intratelencephalic (IT), pyramidal tract (PT), and
corticothalamic (CT) neurons(J. A. Harris et al., 2019; Shepherd & Yamawaki, 2021). Inhibitory cells, which
have less specific projection patterns, are thought to support excitatory computations through circuit motifs and
include parvalbumin (PV), somatostatin (SST), vasoactive intestinal peptide (VIP), and neurogliaform (NGF)
neurons(Tremblay, Lee, & Rudy, 2016; Wang & Yang, 2018).

Table 1: Abbreviations and formal names of the brain regions used in this research.
Abbreviations Formal names

CCMs Canonical cortical microcircuits
Cx.High Higher cortex
Cx.Low Lower cortex
THM Thalamus
BN Basal ganglia
VTA Ventral tegmental area

Table 2: Abbreviations and formal names of the laminar organization of canonical cortical microcircuits
used in this research.

Abbreviations Formal names
L1 Layer 1
L2 Layer 2
L3 Layer 3
L2 3 Layer 2&3
L4 Layer 4
L5 Layer 5
L6 Layer 6

Table 3: Abbreviations and formal names of the cell types of canonical cortical microcircuits used in this
research.

Abbreviations Formal names
PY Pyramidal
E Excitatory
IT Intratelencephalic
PT Pyramidal tract
CT Corticothalamic
IN Inhibitory
PV Parvalbumin
SST Somatostatin
VIP Vasoactive intestinal peptide
NGF Neurogliaform

Due to their structural importance and ubiquity, CCMs have been the subject of several hypotheses about
their computational functions(Bastos et al., 2012; Doya, 2021; Friston, Parr, & de Vries, 2017; George & Hawkins,
2009; Kermani Nejad, Anastasiades, Hertäg, & Costa, 2024; Miyashita, 2024; Rao, 2024). Theories such as the
Bayesian brain hypothesis, Bayesian belief propagation, and predictive coding suggest that neural populations
in each layer contribute to cognitive inference—the process by which the brain integrates sensory input and
prior knowledge to draw conclusions and make predictions, or derive meaning—by encoding variables through
anatomical connections(Bastos et al., 2012; George & Hawkins, 2009; Miyashita, 2024). Recently, models utilizing
self-supervised learning to generate predictions have been proposed(Kermani Nejad et al., 2024). Additionally,
models aiming to unify inference and decision-making—the cognitive process of selecting a course of action among
multiple alternatives based on goals, predictions, and contextual information—within the neocortex have been
developed, including those based on active inference, active predictive coding, and the duality of inference and
control implemented within CCMs(Doya, 2021; Friston et al., 2017; Rao, 2024).

In this study, we outline how cognitive inference could be achieved through specific excitatory neural pop-
ulations and circuit motifs involving inhibitory populations within CCMs. We assign output semantics to each
neural population in the following way: modulated sensory evidence to layer 2 IT neurons, predictions to layer
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3 IT neurons, sensory evidence to layer 4 excitatory neurons, predictive priors to layer 5 IT neurons, posterior
predictions to layer 5 PT neurons, and maximum a posteriori (MAP) estimates to layer 6 IT neurons.

This data aims to connect the anatomical structure and functional roles of CCMs by developing a compu-
tational model capable of dynamic Bayesian inference (DBI). Through a systematic decomposition of functions
necessary for them, using both top-down and bottom-up approaches, we describe the roles of excitatory and in-
hibitory populations within CCMs. A computational model to achieve decision-making based on the anatomical
structure of CCMs has also been developed in a similar way and described in a different publication, with some
overlap in data and descriptions.

2 Method

SCID method The series of procedures followed to produce the dataset according to structure-constrained
interface decomposition (SCID) method (Yamakawa, 2021).

The brief introduction of three steps of SCID method is given as follows:

Step 1. Brain Information Flow (BIF) registering and provisonary creation of Hypothetical Component Diagram.
This steps include (a) surveying anatomical knowledge in specific brain region (ROI: region of interest), (b)
following determination of ROI and TLF (top-level function) consistently and (c) creation of a provisionary
component diagram (called HCD)

Step 2. Enumerating candidate component diagram.

Step 3. Rejecting diagram that are inconsistent with scientific knowledge.

You can see more details about these steps in (Yamakawa, 2021).

Motif definition A motif is a frequently occurring pattern in neural circuits and represents a fundamen-
tal functional unit of complex neural networks(Braganza & Beck, 2018). Motifs consist of nodes, representing
neurons, and edges, representing the connections between neurons. In this study, we focus on motifs involving
inhibitory neurons, examining their contributions to circuit-implemented algorithms(Tremblay et al., 2016). Fig-
ure 1 illustrates the motifs employed in this research. Here, C denotes the capabilities achieved by the motif; for
example, in the left panel of Figure 1, feedforward inhibition enables coincidence detection. X indicates input, Z
represents nodes, black edges denote excitatory connections, and blue edges denote inhibitory connections.

Z1

Z2

Z1 Z2 Z1 Z2 Z3

X1

Feedforward-Inhibition
C.CoinsidenceDetection

Feedback-Inhibition
C.WinnerTakeAll

C.OscillationSynchronization

Disinhibition
C.Gating

Figure 1: Circuit motifs and corresponding capabilities used in this study.

Dynamic Bayesian inference Dynamic Bayesian inference is a probabilistic framework for updating predic-
tions about a internal state that evolves over time, integrating prior knowledge with incoming noisy sensory data
to estimate latent variables(Bishop, 2006). This approach relies on probabilistic graphical models, such as Hid-
den Markov Models (HMMs). Assuming that the state transition model and observation model are pretrained,
we hypothesize that this graphical model can be implemented in canonical cortical microcircuits, mapping its
components to cortical layers(Bastos et al., 2012). Specifically, sensory input from the thalamus is converted into
likelihood information by the observation model intrinsic to layer 4, then transmitted to layer 2. Simultaneously,
the posterior distribution from the previous time step is input as a prior, combined with state predictions derived
from the state transition model in layer 3, and transformed into a predictive prior by layer 5 IT neurons. The
likelihood and predictive prior are then multiplied and normalized by inhibitory neurons, forming the posterior
prediction in layer 5 PT neurons.

Sampling strategy The dataset was constructed by gathering and integrating data from seven publica-
tions(Billeh et al., 2020; Dura-Bernal et al., 2023; K. D. Harris & Mrsic-Flogel, 2013; Shipp, 2007; Thomson,
2007; Tremblay et al., 2016; Vitrac & Benoit-Marand, 2017), including reviews and modeling papers, authored
by researchers involved in cortical experiments and theoretical neuroscience. The selection of references consid-
ered multiple factors, including the journal of publication, the comprehensiveness of anatomical descriptions, the
level of detail specific to particular circuits, and consistency with other literature. Detailed information on the
referenced publications, including titles, authors, journals, and publication years, is available in the “References”
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sheet of the dataset. The motifs used to construct the FRG data were chosen based on prior empirical studies of
cortical neural circuits and functional requirements essential for algorithm implementation.

3 Dataset Description

Repository location BRA Editorial System (BRAES) https://sites.google.com/wba-initiative.org/
braes/data

Object name and versions Please refer to the “Project” sheet in the BRA data for the more detail of data
summary.

Table 4: BRA DATA SUMMARY
BRA Data
Object Name Template Including Content(s)

BIF HCD/FRG

NY24CanonicalCorticalMicrocircuitsInference.bra version 2.1.1
√ √

Table 5: BRA IMAGE SUMMARY
Graphic Files: BIF Image, HCD Image, FRG Image
File Type Object Name

BIF Image NY24CanonicalCorticalMicrocircuitsInferenceBIF.xml
HCD Image NY24CanonicalCorticalMicrocircuitsInferenceHCD.xml
FRG Image NY24CanonicalCorticalMicrocircuitsInferenceFRG.xml

Creation dates 2024-8-5 to 2025-1-18.

Language English.

License The open license under which the data has been deposited (CC-BY 4.0).

Publication date 2025-1-18.

Figure 2: NY24CanonicalCorticalMicrocircuitsInferenceHCD.
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Figure 3: NY24CanonicalCorticalMicrocircuitsInferenceFRG.

4 Caveats for Data Usage

The brain-referenced architecture (BRA) data encompasses BIF (Brain Information Flow), HCD (Hierarchical
Component Diagram), and FRG (Functional Realization Graph) data, offering potential reuse for researchers in
neuroscience and information science. This dataset provides standardized descriptions across various brain regions,
facilitating integration and comparison of distinct neural areas. Beyond contributing to a deeper understanding
of brain anatomy and function, these data can support the construction of simulation models.

This study includes several considerations that users should note. Notably, it incorporates inhibitory neuron
subtypes and their connections into the anatomical structure of canonical cortical microcircuits. However, due
to technical limitations in current experimental methodologies, projections to inhibitory neurons are underrepre-
sented in the literature. Thus, the current anatomical data on canonical cortical microcircuits remains incomplete.
The constructed computational component diagram (HCD) aligns with anatomical connections documented in
BIF, utilizing only verified connections. However, it does not account for a range of possible projections, as
selections were made to fulfill computational requirements based on a subset of BIF connections. Although the
canonical cortical microcircuit serves as the fundamental unit of various cortical functions, the present HCD is
limited to functions related to inference and decision-making (described in a separate paper, with some overlap
in data and descriptions). Future work is required to extend the HCD to support other cortical functions.

Funding Statement

This research was supported by the Matsuo-Iwasawa lab and the ANRI fellowship.

Competing interests

Yoshimasa Tawatsuji and Hiroshi Yamakawa are BRAES managers but did not participate in the editorial process
or decisions related to this manuscript.

References

Audette, N. J., Urban-Ciecko, J., Matsushita, M., & Barth, A. L. (2017). Pom thalamocortical input
drives layer-specific microcircuits in somatosensory cortex. Cerebral Cortex , 28 (4), 1312–1328.
DOI: 10.1093/cercor/bhx044

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical
microcircuits for predictive coding. Neuron, 76 (4), 695–711.

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., . . . Arkhipov, A. (2020).
Systematic integration of structural and functional data into multi-scale models of mouse primary
visual cortex. Neuron, 106 (3), 388–403.e18. DOI: 10.1016/j.neuron.2020.01.040

Bishop, C. (2006). Pattern recognition and machine learning. Springer.

5



Proceedings of 2nd International Whole Brain Architecture Workshop

Braganza, O., & Beck, H. (2018). The circuit motif as a conceptual tool for multilevel neuroscience.
Trends in Neurosciences, 41 (3), 128–136. DOI: 10.1016/j.tins.2018.01.002

Constantinople, C. M., & Bruno, R. M. (2013). Deep cortical layers are activated directly by thalamus.
Science, 340 (6140), 1591–1594. DOI: 10.1126/science.1236425

Doya, K. (2021). Canonical cortical circuits and the duality of bayesian inference and optimal control.
Current Opinion in Behavioral Sciences, 41 , 160–167. DOI: 10.1016/j.cobeha.2021.07.003

Dura-Bernal, S., Neymotin, S. A., Suter, B. A., Dacre, J., Moreira, J. V., Urdapilleta, E.,
. . . Lytton, W. W. (2023). Multiscale model of primary motor cortex circuits predicts
in vivo cell-type-specific, behavioral state-dependent dynamics. Cell Reports, 42 (6), 112574.
DOI: 10.1016/j.celrep.2023.112574

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral
cortex. Cerebral Cortex , 1 (1), 1-47. DOI: 10.1093/cercor/1.1.1-a

Friston, K. J., Parr, T., & de Vries, B. (2017). The graphical brain: Belief propagation and active
inference. Network Neuroscience, 1 (4), 381–414. DOI: 10.1162/netna00018

George, D., & Hawkins, J. (2009). Towards a mathematical theory of cortical micro-circuits. PLoS
Computational Biology , 5 (10), e1000532. DOI: 10.1371/journal.pcbi.1000532

Harris, J. A., Mihalas, S., Hirokawa, K. E., Whitesell, J. D., Choi, H., Bernard, A., . . . Zeng, H.
(2019). Hierarchical organization of cortical and thalamic connectivity. Nature, 575 (7781), 195–202.
DOI: 10.1038/s41586-019-1716-z

Harris, K. D., & Mrsic-Flogel, T. D. (2013). Cortical connectivity and sensory coding. Nature, 503 (7474),
51–58. DOI: 10.1038/nature12654
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