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Abstract 

Logistic regression has been a standard multivariate analysis method for binary outcomes 

in clinical and epidemiological studies; however, the odds ratios cannot be interpreted as 

effect measures directly. The modified Poisson and least-squares regressions are 

alternative effective methods to provide risk ratio and risk difference estimates. However, 

their ordinary Wald-type inference methods using the sandwich variance estimator 

seriously underestimate the statistical errors under small or moderate sample settings. In 

this article, we develop alternative likelihood-ratio-type inference methods for these 

regression analyses based on Wedderburn’s quasi-likelihood theory. A remarkable 

advantage of the proposed methods is that we have correct information for the true models 

(i.e., the binomial log-linear and linear models). Using this modeling information, we 

develop an effective parametric bootstrap algorithm for accurate inferences. In particular, 

we propose the Bartlett-type mean calibration approach and bootstrap test-based approach 

for the quasi-likelihood ratio statistic. In addition, we propose another computationally 

efficient modified approximate quasi-likelihood ratio statistic whose large sample 

distribution can be approximated by the 𝜒2  distribution and its bootstrap inference 

method. In numerical studies by simulations, the new bootstrap-based methods 

outperformed the current standard Wald-type confidence interval. We applied these 

methods to a clinical study of epilepsy. 

 

Key words: generalized linear model, estimating equation, quasi-likelihood, bootstrap, 

separation problem. 
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1. Introduction 

Logistic regression has been widely used as an effective multivariate analysis method for 

analyzing binary outcome data. However, the regression coefficients can only be 

interpreted as log-transformed odds ratios. An odds ratio cannot be interpreted as an effect 

measure by itself and can only be interpreted as an approximation of risk ratio when the 

frequency of events is small [1,2]. Thus, the use of the risk ratio and risk difference is 

alternatively recommended in recent guidelines; e.g., the statistical reporting guidelines 

for The New England Journal of Medicine recommend avoiding using the odds ratio when 

reporting the results of clinical trials. 

To circumvent the use of logistic regression, researchers have considered other 

binomial regression models with log or identity links [3]. However, the values of the 

regression functions can exceed the range [0, 1] for these models and the maximum 

likelihood (ML) estimates cannot often be defined in practice [4,5]. The modified Poisson 

and least-squares (Gaussian) regression analyses [6,7] have been proposed as alternative 

quasi-likelihood inference methods for these binomial regression analyses with 

effectively circumventing the computational difficulties. Although the procedures are 

simple, i.e., formally fitting the ordinary Poisson and least-squares regression models to 

binary outcome data, consistent estimators of risk ratios and risk differences are obtained. 

Founded on the quasi-likelihood estimating equation theory of the generalized linear 

model (GLM; [8-10], the estimating function is assured to be unbiased even if the 

distributional assumption is violated, as long as the regression function model is correct. 

For inferences of the regression coefficients, the variance estimators should be 

corrected to the sandwich variance estimator [11] because the distributional assumptions 

are incorrect. One relevant issue with the sandwich variance estimator is serious bias 

under small or moderate sample settings [12,13]. Also, the quasi-ML estimators of the 
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regression coefficients have biases under small sample settings, as is well known for the 

logistic regression [14,15]. Because of these biases, the Wald-type confidence intervals 

for both of these methods can seriously underestimate the actual statistical errors under 

small or moderate sample settings. These properties are especially serious under small 

and sparse data settings, which is known as the "separation" condition—a situation where 

the outcome variable separates a predictor variable completely. This situation can occur 

even for large datasets in cases of rare events or influential covariates. 

In this article, to address these issues, we propose alternative likelihood-ratio-type 

inference methods for the modified Poisson and least-squares regression analyses. For the 

general GLM theory, inference methods based on the likelihood ratio statistic or profile 

likelihood have been effective alternatives for the simple Wald-type inference methods 

[16,17]. However, these methods are founded on the ML-based theory and cannot be 

simply adapted to the quasi-ML inference methods. We first show that the quasi-

likelihood ratio statistics of these two regression models cannot be approximated by the 

𝜒2 distribution through asymptotic expansion. We then discuss how to use these statistics 

in the inferences as the ML-based theory. As a new method, we propose a mean 

calibration approach of the quasi-likelihood ratio statistics to adjust their scale mis-

specifications and improve the 𝜒2  approximations via the Bartlett-type correction 

[18,19]. We also propose applying a bootstrap approach to directly estimate the sample 

distributions of the quasi-likelihood ratio statistics. We then provide additional simply 

calculable modified approximate quasi-likelihood ratio statistics that follow the 𝜒2 

distribution asymptotically. They can be used as alternative tools for likelihood ratio 

statistics under large sample settings and are calculable via simple matrix computations. 

In addition, for small or moderate sample inferences, we propose applying the bootstrap 

approach to the modified approximate quasi-likelihood ratio statistics. We discuss 
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adapting all of these methods for calculating accurate confidence intervals. Numerical 

evaluations via simulation studies showed that the coverage properties of the bootstrap 

methods were favorable compared with those of the ordinary Wald-type confidence 

interval. In addition, we demonstrate the application of the proposed methods to a clinical 

study of epilepsy. We have developed an R package, QLRM 

(https://github.com/nomahi/QLRM), that can implement the proposed methods via 

simple commands. 

 

2. Modified Poisson and least-squares regressions 

Consider a cohort study consisting of 𝑛 participants with binary outcome 𝑌1, … , 𝑌𝑛 (=

1: event occurred, = 0: not occurred) and covariates 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝)
𝑇
. Although 

the binomial regressions with log-link and identity-link functions have been 

conventionally discussed for multivariate analyses of risk ratio and risk difference, they 

involve serious computational difficulties because the values of the regression functions 

do not fall within [0, 1] [4,5]. The modified Poisson and least-squares regressions were 

proposed by Zou [6] and Cheung [7], respectively, as alternative effective methods for 

these multivariate analyses. Zou [6] and Cheung [7] proposed formally fitting the Poisson 

and least-squares regression models, respectively, to the binary outcome data, 

log(E[𝑌𝑖|𝒙𝑖]) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 

E[𝑌𝑖|𝒙𝑖] = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 

The resultant quasi-ML estimators �̂�  of the regression coefficients 𝜷 =

(𝛽0, 𝛽1, … , 𝛽𝑝)
𝑇
 become consistent estimators of the log-transformed risk ratios and risk 

differences on the target population. 

The validity of these estimating methods is founded on the estimating equation 

theory of GLM [10], 

https://github.com/nomahi/QLRM
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𝑈(𝜷) =∑𝑫𝑖
𝑇𝑉𝑖

−1(𝑌𝑖 − 𝜇𝑖)

𝑛

𝑖=1

= 0 

Where 𝜇𝑖 is the mean function (= exp(𝜷𝑇𝒙𝑖) for the Poisson model and = 𝜷𝑇𝒙𝑖 for 

the Gaussian model) and 𝑫𝑖 = 𝜕𝜇𝑖 𝜕⁄ 𝜷 ; in addition, 𝑉𝑖 = 𝑣(𝜇𝑖)  is the variance 

function of the outcome variable (= 𝜇𝑖 for the Poisson model and = 1 for the Gaussian 

model) (𝑖 = 1,… , 𝑛) . The functional form of 𝑈(𝜷)  indicates that, as long as the 

functional forms of the regression functions are correctly specified, the estimating 

functions are unbiased even if the distribution forms are mis-specified. In particular, for 

the modified least-squares regression, the Gauss–Markov theorem [20,21] is fulfilled and 

the quasi-ML estimator becomes the best linear unbiased estimator (BLUE); �̂� is an 

unbiased and the most precise estimator for the regression coefficients of the binomial 

regression function. The standard errors of �̂� are consistently estimated by the sandwich 

variance estimator [11]. 

 

3. Quasi-likelihood ratio statistic and the Bartlett-type correction 

3.1 Asymptotic distribution of the quasi-likelihood ratio statistic 

For the modified Poisson and least-squares regressions, the Wald-type confidence 

interval using the standard sandwich variance estimator [11] has been widely adopted. 

However, for conventional logistic regression, the profile likelihood approach based on 

the likelihood ratio statistic has been used as alternative effective option [16,17]. We 

consider a test for a composite null hypothesis H0: 𝜷𝑡 = 𝜷𝑡,null = (𝛽1,null, … , 𝛽𝑞,null)
𝑇
 

vs. H1: 𝜷𝑡 ≠ 𝜷𝑡,null ; without loss of generality, we consider the test of regression 

coefficients of first 𝑞  variables ( 𝑞 < 𝑝 ) and denote the complement as 𝜷𝑐 =

(𝛽0, 𝛽𝑞+1, … , 𝛽𝑝)
𝑇
. We also denote the constrained quasi-ML estimate of 𝜷𝑐 under H0 

as �̃�𝑐 = (�̃�0, �̃�𝑞+1, … , �̃�𝑝)
𝑇
  and denote �̃� = (�̃�0, 𝛽1,null, … , 𝛽𝑞,null, �̃�𝑞+1, … , �̃�𝑝)

𝑇
 ; the 
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constrained quasi-ML estimates can be computed similarly by setting 𝛽1,null𝑥𝑖1 +⋯+

𝛽𝑞,null𝑥𝑖𝑞 as the offset. The quasi-loglikelihood function ℓ(𝜷) is then expressed via the 

asymptotic expansion around 𝜷 = �̃�, 

ℓ(𝜷) = ℓ(�̃�) + 𝑈(�̃�)(𝜷 − �̃�) −
1

2
(𝜷 − �̃�)

𝑇
𝐼(�̃�)(𝜷 − �̃�) 

where 𝐼(𝜷) = −𝐸[𝜕𝑈(𝜷) 𝜕𝜷⁄ ]  is the Fisher information matrix (= 𝑿𝑹1𝑿
𝑇  for the 

modified Poisson regression and = 𝑿𝑿𝑇 for the modified least-squares regression; 𝑿 =

(𝒙1, … , 𝒙𝑛) ; and 𝑹1 = diag{𝜇1, … , 𝜇𝑛} ). When 𝜷 = �̂� , the quasi-loglikelihood ratio 

statistic is approximated as 

−2{ℓ(�̂�) − ℓ(�̃�)} = (�̂� − �̃�)
𝑇
𝐼(�̃�)(�̂� − �̃�)(∗) 

Therefore, the quasi-likelihood statistic is approximated by the standardized multivariate 

normal quantity �̂�. When the quasi-ML estimator �̂� achieves the Cramer–Rao’s bound 

asymptotically, the asymptotic distribution can be approximated by the 𝜒2 distribution. 

However, the variance function is mis-specified for these estimating methods; the 

asymptotic distribution of (�̂� − �̃�)  corresponds to MVN(0, 𝐼(�̃�)
−1
𝐽(�̃�)𝐼(�̃�)

−1
 ), 

where 𝐽(𝜷) = 𝐸[𝑈(𝜷)𝑈(𝜷)𝑇]. Thus, the quantity on the right-hand side does not follow 

a 𝜒2  distribution even under large sample settings and we cannot use the profile 

likelihood approach for these analysis methods simply as the conventional ML-based 

theory.  

 

3.2 Mean calibration by bootstrapping approach 

The asymptotic distribution of the quasi-likelihood ratio statistic 

𝑇(𝜷𝑡,null) = −2{ℓ(�̂�) − ℓ(�̃�)} 

cannot be approximated by the 𝜒2 distribution, and the preceding result indicates that 

the standardization term 𝐼(�̃�)  of right hand of (*) is inadequate for the 𝜒2 
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approximation, i.e., only the dispersion adjustment is inadequate. One effective approach 

to constructing a valid statistical test using the quasi-likelihood ratio statistic is to adjust 

the dispersion correctly, and a simple method to carry out the adjustment is to multiply 

the adjustment term by the quasi-likelihood ratio statistic. In addition, a conventional 

approach to improve the likelihood ratio test via higher-order asymptotic theory is the 

Bartlett correction [18,19] that improves the 𝜒2 approximation via multiplication by an 

adjustment term: the inverse of an estimate of the mean of sample distribution of 

𝑇(𝜷𝑡,null), 𝐸[𝑇(𝜷𝑡,null)]. The former dispersion adjustment is also achieved by the mean 

calibration because the 𝜒2  variable is only mis-standardized by the inadequate 

standardization term. Thus, both adjustments are realized by calibrating 𝑇(𝜷𝑡,null) 

against the estimated mean of the sample distribution. We here propose adjusting both of 

these factors simultaneously by dividing the quasi-likelihood ratio statistic by the 

bootstrap estimate of the mean of the sample distribution, 

𝑇𝑐(𝜷𝑡,null) =
𝑇(𝜷𝑡,null)

𝐶
 

where 𝐶  is the bootstrap estimate of 𝐸[𝑇(𝜷𝑡,null)] . In applying the bootstrapping 

approach, it should be noted that a relevant feature of these estimating methods is that the 

correct distributional assumptions about the target population are known; the binomial 

log-linear and linear regression models. This issue is a distinguishable characteristic of 

these methods from other semiparametric regression models, e.g., the generalized 

estimating equation (GEE), in which the second moment assumption is substantially 

unknown and working assumptions are formally adapted [22]. In moderate sample 

analyses, the parametric assumptions can gain the accuracy of bootstrap inferences and 

we adopt the parametric bootstrap approach using the correct model information here. 

We propose performing the bootstrap resampling from the “correct” binomial regression 
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models by substituting the regression coefficients 𝜷 for the null value �̃�. The bootstrap 

algorithm to estimate the adjustment term 𝐶 is described as follows: 

 

Algorithm 1 (bootstrap estimation for the calibration term 𝐶) 

1. For the modified Poisson and least-squares regression models, compute the constrained 

quasi-ML estimates �̃�𝑐 under H0: 𝜷𝑡 = 𝜷𝑡,null. 

2. Resample 𝑌1
(𝑏)
, … , 𝑌𝑛

(𝑏)
 from the binomial regression models with log or identity links 

whose regression coefficients 𝜷 are fixed to �̃�, 

Pr(𝑌𝑖 = 1|𝒙𝑖) = exp(�̃�0 + 𝛽1,null𝑥𝑖1 +⋯+ 𝛽𝑞,null𝑥𝑖𝑞 + �̃�𝑞+1𝑥𝑖𝑞+1 +⋯+ �̃�𝑝𝑥𝑖𝑝) 

Pr(𝑌𝑖 = 1|𝒙𝑖) = �̃�0 + 𝛽1,null𝑥𝑖1 +⋯+ 𝛽𝑞,null𝑥𝑖𝑞 + �̃�𝑞+1𝑥𝑖𝑞+1 +⋯+ �̃�𝑝𝑥𝑖𝑝 

via parametric bootstraps, 𝐵 times (𝑖 = 1,… , 𝑛; 𝑏 = 1,2, … , 𝐵). The design matrix 𝑿 

is not altered from the original data across the 𝐵 resampling. Also, if the values of the 

regression functions on the right-hand sides of the equations exceed the range [0, 1], they 

should be truncated at 0 or 1. 

3. Compute the quasi-likelihood ratio statistic 𝑇(𝑏)(𝜷𝑡,null) for the 𝑏th bootstrap sample 

𝑌1
(𝑏)
, … , 𝑌𝑛

(𝑏)
 (𝑏 = 1,2, … , 𝐵).  

4. Calculate the empirical mean of 𝑇(1)(𝜷𝑡,null), … , 𝑇(𝐵)(𝜷𝑡,null) as a bootstrap estimate 

of the adjustment term, i.e., 𝐶 = ∑ 𝑇(𝑏)(𝜷𝑡,null)
𝐵
𝑏=1 𝐵⁄ . 

 

We propose then using the resultant 𝑇𝑐(𝜷𝑡,null)  as the test statistic and to adopt the 

ordinary 𝜒2  distribution with 𝑞 degrees of freedom as the reference distribution. In 

addition, when 𝑞 = 1 , the 100 × (1 − 𝛼)%  confidence intervals of 𝛽1  can be 

constructed by the sets of null values that satisfy 

𝑇𝑐(𝛽1,null) ≤ 𝜒1,1−𝛼
2  

where 𝜒1,1−𝛼
2  is the upper 𝛼 th percentile of the 𝜒2  distribution with 1 degree of 
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freedom. The confidence limits can be calculated by adequate numerical methods (e.g., 

the bisectional methods; [23]). The accuracy of the test and confidence interval is 

expected to be improved by the higher-order approximation based on the Bartlett 

correction theory [18,19]. The adjusted quasi-likelihood ratio test can be generally used 

like the ordinary likelihood ratio test for the ML-based approaches of GLM [24] involving 

the profile-likelihood analyses [25]. Notably, to ensure the accuracy of the bootstrap mean 

estimation, the number of bootstrap resampling 𝐵 should be sufficiently large (usually 

at least 200; [26]). 

 

3.3 Bootstrap inferences via direct estimation of the sample distribution of 𝑇(𝜷𝑡,𝑛𝑢𝑙𝑙) 

Another effective approach to construct statistical tests or confidence intervals is the 

direct estimation of the sample distribution via bootstrap. In this approach, we adopt the 

quasi-likelihood ratio statistic 𝑇(𝜷𝑡,null)  as the test statistic and use its bootstrap 

distribution as the reference distribution. The bootstrap algorithm is as follows: 

 

Algorithm 2 (bootstrap estimation for the sample distribution of 𝑇(𝜷𝑡,null)) 

1. Implement procedures 1–3 of Algorithm 1 and generate the bootstrap samples 

𝑇(1)(𝜷𝑡,null), … , 𝑇(𝐵)(𝜷𝑡,null). 

2. Calculate the empirical distribution function of 𝑇(1)(𝜷𝑡,null), … , 𝑇(𝐵)(𝜷𝑡,null) , 

specifically, �̅�𝑇(𝑡) , which corresponds to the bootstrap estimate of the sample 

distribution of 𝑇(𝜷𝑡,null). 

 

To control the accuracy of the Monte Carlo estimation for the tail area of the null 

distribution, the number of replications should be sufficiently large (usually at least 1000;  

[26]). The bootstrap-based test simply uses �̅�𝑇(𝑡) as the reference distribution instead of 



9 

 

the 𝜒2  distribution. Also, when 𝑞 = 1 , the corresponding 100 × (1 − 𝛼)% 

confidence interval of 𝛽1 can be constructed by the sets of 𝛽1,null that fulfill 

𝑇(𝛽1,null) ≤ �̅�𝑇(1 − 𝛼) 

The confidence limits can also be calculated by adequate numerical methods (e.g., the 

bisectional methods; [23]). The parametric bootstrap approach also effectively uses the 

distributional information of the correct models; thus, the approximation of the sample 

distribution is expected to be improved. The actual performances are demonstrated in the 

simulation studies presented in Section 4. 

 

3.4 Scale adjustment of the asymptotic approximation 

For the asymptotic approximation of the quasi-likelihood ratio statistic (*), the quantity 

on the right-hand side mis-specifies the scaling factor. However, this quantity is similar 

to the ordinary Wald statistic and is easy to calculate by matrix computation in practice. 

Also, it involves the quasi-ML estimates under both the null and alternative hypotheses 

and, with some modifications, might be used as an approximate quantity for the scale-

adjusted quasi-likelihood statistic. We then propose the following statistic as the 

approximate scale-corrected quasi-likelihood ratio statistic, i.e., 

𝑊(𝜷𝑡,null) = (�̂� − �̃�)
𝑇
{𝐼(�̃�)

−1
𝐽(�̃�)𝐼(�̃�)

−1
}
−1

(�̂� − �̃�) 

This statistic can be interpreted as an approximated quantity of the mean calibrated quasi-

likelihood statistic described in Section 3.2. Note that the center portion of the sandwich 

estimator 𝐽(𝜷) can be estimated using the “correct” model information, which is the 

distinguishing feature of these quasi-likelihood regression analyses, as previously noted, 

i.e., the expectations can be substituted for those of the binomial regression models. The 

concrete form is expressed as 
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𝐽(𝜷) =∑𝑉[𝑌𝑖]𝒙𝑖𝒙𝑖
𝑇

𝑛

𝑖=1

=∑𝜇𝑖(1 − 𝜇𝑖)𝒙𝑖𝒙𝑖
𝑇

𝑛

𝑖=1

= 𝑿𝑹2𝑿
𝑇 

where 𝑹2 = diag{𝜇1(1 − 𝜇1), … , 𝜇𝑛(1 − 𝜇𝑛)} . Although the definitions of the mean 

function 𝜇𝑖 differ between the Poisson and Gaussian models, the functional forms are 

the same. Note that 𝜇1, … , 𝜇𝑛  should be truncated on [0, 1] on 𝑹2  because the 

individual variance functions should not be negative values. 

The scale-adjusted approximate statistic 𝑊(𝜷𝑡,null)  can be computed easily by 

standard statistical software and can be directly used like the conventional likelihood 

statistic for GLM [24]. If 𝑊(𝜷𝑡,null)  is used as the test statistic, the asymptotic 

distribution is approximated by the ordinary 𝜒2 distribution with 𝑞 degrees of freedom 

and can be used like the conventional 𝜒2-tests. Also, when 𝑞 = 1, the 100 × (1 − 𝛼)% 

confidence intervals of 𝛽1 can be constructed by the sets of null values that satisfy 

𝑊(𝛽1,null) ≤ 𝜒1,1−𝛼
2  

where 𝜒1,1−𝛼
2  is the upper 𝛼th percentile of the 𝜒2  distribution with one degree of 

freedom. The confidence limits can also be calculated by adequate numerical methods 

(e.g., the bisectional methods; [23]). 

 In addition, the 𝜒2 approximation can also be violated under small or moderate 

sample settings for 𝑊(𝜷𝑡,null) because this approximation depends on the central limit 

theorem. To address this problem, we can also adopt the bootstrap approach described in 

Section 3.3 for the inferences based on 𝑊(𝜷𝑡,null). The bootstrap algorithm is provided 

as follows: 

 

Algorithm 3 (bootstrap estimation for the sample distribution of 𝑊(𝜷𝑡,null)) 

1. Implement procedures 1–3 of Algorithm 1 and generate the bootstrap samples 

𝑊(1)(𝜷𝑡,null), … ,𝑊(𝐵)(𝜷𝑡,null) by calculating 𝑊(𝜷𝑡,null) for the 𝑏th bootstrap sample 
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𝑌1
(𝑏)
, … , 𝑌𝑛

(𝑏)
 (𝑏 = 1,2, … , 𝐵). 

2. Calculate the empirical distribution function of 𝑊(1)(𝜷𝑡,null), … ,𝑊(𝐵)(𝜷𝑡,null) , 

specifically, �̅�𝑊(𝑡) , which corresponds to the bootstrap estimate of the sample 

distribution of 𝑊(𝜷𝑡,null). 

 

To control the Monte Carlo error in the bootstrap estimation, the number of replications 

should also be sufficiently large (usually at least 1000; [26]). The bootstrap-based test can 

be constructed using �̅�𝑊(𝑡) as the reference distribution instead of the 𝜒2 distribution. 

Also, when 𝑞 = 1, the 100 × (1 − 𝛼)% confidence interval of 𝛽1 can be constructed 

by the sets of 𝛽1,null that fulfill 

𝑊(𝛽1,null) ≤ �̅�𝑊(1 − 𝛼) 

The confidence limits can also be calculated by adequate numerical methods, e.g., the 

bisectional methods [23]. The bootstrap approach effectively adapts the higher-order 

asymptotic for the statistical inferences, and the accuracy of the inferences is expected to 

be improved. The performances under actual data analyses are demonstrated in the 

simulation studies presented in Section 4. 

    An R package, QLRM, for implementing the proposed methods via simple commands 

is available at https://github.com/nomahi/QLRM. 

 

4. Simulations 

To assess the performances of the proposed methods under practical settings, we carried 

out simulation experiments. We generated the datasets from the binomial regression 

models with log and identity links, and their parameter settings mimicked the clinical 

study of epilepsy discussed in Section 5. In the regression functions, four variables were 

modelled: 𝑥𝑖1  was the main treatment/exposure variable that followed a Bernoulli 

https://github.com/nomahi/QLRM
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distribution with probability 0.20 or 0.10 (= 𝑃treat); 𝑥𝑖2 was a confounding variable 

that followed a Bernoulli distribution with probability 0.773 and had a correlation with 

𝑥𝑖1  measured by the odds ratio (OR) 

Pr(𝑥𝑖1 = 1)Pr(𝑥𝑖2 = 0) Pr(𝑥𝑖1 = 0)Pr(𝑥𝑖2 = 1)⁄   = 25, 15, and 5; 𝑥𝑖3  followed a 

Bernoulli distribution with probability 0.455; and 𝑥𝑖4 followed N(29.0, 7.37). On the 

basis of the regression functions, the outcome variable 𝑌𝑖  was generated from a 

Bernoulli distribution with probability 

Pr(𝑌𝑖 = 1) = exp(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖4) 

Pr(𝑌𝑖 = 1) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖4 

The intercept 𝛽0 was set by controlling the overall event rate of the cohort; the event rate 

was varied on 0.40 and 0.20 (= 𝑃event). The other regression coefficients were set as 

(𝛽1, 𝛽2, 𝛽3, 𝛽4) = (0.205,−0.271, 0.000, 0.153)  for the log-linear model and 

(𝛽1, 𝛽2, 𝛽3, 𝛽4) = (0.116,−0.041, 0.0037,0.023) for the linear model. The sample size 

was set as 𝑛 = 40, 60, 80. We implemented 5000 simulations for each scenario, both for 

the log-linear and linear regression models. 

    For performance measurements, we assessed the coverage probabilities of 95% 

confidence intervals for the regression coefficient of the main treatment/exposure variable. 

We applied the four proposed methods in Section 3 for analyses of individual datasets and 

calculated 95% confidence intervals by (1) the corrected quasi-likelihood ratio (CQLR) 

by mean calibration, (2) the bootstrap approach based on the quasi-likelihood ratio (QLR), 

(3) the modified approximate quasi-likelihood ratio (MAQLR), (4) the bootstrap 

approach based on the MAQLR statistic. For the bootstrap methods, we consistently 

performed 2000 bootstrap resamplings. For comparisons, we also applied the current 

standard ordinary Wald-type confidence interval. The coverage probabilities for the true 

risk ratios and risk differences were evaluated. 
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    The results of the simulations are presented in Tables 1 and 2. The empirical 

coverage probabilities of 95% confidence intervals for the 5000 simulations are 

summarized for the five methods. For the modified Poisson regression, the Wald 95% 

confidence intervals generally showed undercoverage under moderate sample settings, 

especially for scenarios where the separations or quasi-separations are likely to occur; 

that is, where 𝑃treat and 𝑃event are small and the OR is large. These results were caused 

by the biases for both the regression coefficient and the robust standard error estimates 

under these conditions. Also, the MAQLR confidence interval without bootstrap showed 

better small-sample performances compared with the ordinary Wald confidence interval 

under certain scenarios but also showed worse performances under other scenarios. This 

difference might be attributable to this method also depending on the large-sample 𝜒2 

approximation without higher-order approximations. In addition, the other three 

bootstrap-based methods retained the coverage probabilities of approximately the 

nominal level (95%) for almost all of the scenarios. Even for small sample settings (𝑛 =

40), the coverage probabilities were valued at approximately the nominal level (95%) 

consistently. For the CQLR confidence interval, although the 𝜒2  approximation was 

used, the coverage performances were clearly improved compared with the naïve methods 

because the Bartlett-type correction was applied. In addition, the bootstrap approaches 

for estimating the sample distribution improved the approximations and the coverage 

performances were clearly improved. 

    For the modified least-squares regression, the overall features of the results were 

similar to those for the modified Poisson regression cases. Under small or moderate 

sample settings, the Wald-type 95% confidence intervals showed undercoverage in 

general. Note that the quasi-ML estimates obtained by the modified least-squares 

regression correspond to the BLUE obtained by the Gauss–Markov theorem; thus, no 
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biases were observed for the coefficient estimator. However, the robust variance estimator 

was seriously biased under small or moderate sample settings. The degrees of 

undercoverage also became serious if 𝑃treat  and 𝑃event  were small and the OR was 

large. Similar trends were observed for the MAQLR confidence interval by the ordinary 

𝜒2 approximation. However, the bootstrap-based approaches provided valid confidence 

intervals with favorable coverage properties consistently. Even for the small sample 

settings (𝑛 = 40), the coverage probabilities were consistently close to the nominal level 

(95%). The coverage probabilities were relatively larger than those of the modified 

Poisson regression cases, which might be caused by the regression coefficient estimator 

being unbiased for the modified least-squares regression even under small sample settings. 

For larger sample settings, the accuracy of the confidence intervals based on the proposed 

three methods would be retained. 

 

5. Applications 

We applied the proposed methods to the epilepsy clinical study reported by Arai et al. 

[27]. This study was performed using electric medical records to determine what factors 

are associated with the employment statuses of patients with a history of childhood-onset 

drug-resistant epilepsy. Here, we analyzed 44 patients who lived in Tottori prefecture in 

Japan. The outcome was employment status (1 = non-employment, 0 = employment; the 

number of events was 11), and we analyzed this retrospective cohort data using the 

modified Poisson and least-squares regressions. Four explanatory variables were modeled 

in the regression models: age at follow up, gender, mood disorder symptoms, and 

graduating from a school for special needs education. Note the last two variables were 

highly correlated, and both of these variables were significantly associated with the 

outcome through univariate analyses [27]. For the bootstrap-based methods, we 
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consistently performed 2000 resamplings. 

    The results are presented in Table 3. The quasi-ML estimates of risk ratios and risk 

differences and their 95% confidence intervals using the ordinary Wald-type method and 

the proposed four methods are presented. A remarkable characteristic of the proposed 

methods is that the confidence intervals are asymmetric around the quasi-ML estimates 

in general. Also, in some cases, locations of the confidence intervals differ substantially 

from the Wald-type confidence intervals. These features are generally known for the 

likelihood ratio-based confidence intervals [28]. The widths of the confidence intervals 

obtained by the bootstrap methods were generally larger than the Wald confidence 

intervals. 

For the modified Poisson regression, the 95% Wald-type confidence intervals 

covered the null value (=1) for all variables. The proposed confidence intervals also all 

covered 1. For the third covariate, the bootstrap-based confidence intervals were narrower 

than that of Wald confidence interval. Such phenomena have sometimes been verified in 

our experience. However, the coverage probabilities should be the nominal level on 

average, which means that these confidence intervals can provide more precise interval 

estimates while retaining their coverage validities. For the bootstrap confidence interval 

obtained by the MAQLR for gender, the upper limit of the confidence interval was not 

identifiable; the bootstrap P-values for the upper region of the quasi-ML estimate were 

all >0.05. Such results can also occur sometimes, but the coverage probabilities should 

be retained at the nominal level. However, in such cases, other methods should also be 

attempted. In addition, for the modified least-squares regression, neither the Wald-type 

confidence interval of the third covariate nor the confidence intervals obtained by the 

proposed methods involved the null value (=0). However, the confidence intervals 

obtained by the bootstrap-based approaches were wider and slightly vague effects were 
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indicated. Also, for the fourth covariate, the CQLR and bootstrapping QLR confidence 

intervals were much wider than the Wald confidence interval; however, the MAQLR 

confidence interval did not substantially differ from the Wald confidence interval. The 

simulation studies presented in Section 4 showed that the ordinary Wald confidence 

interval possibly underestimates the statistical errors and that the proposed bootstrap 

methods provide more accurate interval estimates in general. The improved methods 

would provide more precise evidence in these clinical studies. 

 

6. Discussion 

In clinical and epidemiological studies, odds ratios can lead to misleading interpretations, 

and the applications of logistic regression analyses have been seriously limited [1-3]. The 

modified Poisson and least-squares regressions provide effective solutions to this relevant 

issue without introducing computational difficulties and have been increasingly used in 

recent clinical and epidemiological studies. However, in this article, we explicitly showed 

that the ordinary Wald-type confidence intervals obtained in these methods could 

seriously underestimate the statistical errors, especially under separation or quasi-

separation settings. This inadequacy is clearly resolved by the proposed new methods. 

Given the enormous effects of misleading evidence on clinical practice, public health, and 

policy making, accurate inference methods should be adopted in clinical and 

epidemiological studies. On the basis of the numerical evidence presented in this study, 

we expect that our new methods will be recommended in practical applications even 

under large sample settings in future medical studies. 

    Comparing the four new methods, we find that the MAQLR-based inference could 

possibly produce erroneous results under moderate sample settings. However, the large 

sample approximation will be fulfilled under sufficiently large sample settings. Then, the 
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MAQLR-based method is computationally efficient because it uses the 𝜒2 

approximation and can be used as an alternative method to the conventional likelihood-

ratio-based analysis methods of GLM, such as deviance analyses [24]. The other 

bootstrap-based approaches will certainly provide more accurate results, and recent 

computational environments enable these methods to be used as realistically applicable 

methods for large-scale datasets. In the three bootstrap methods, the bootstrap testing-

based methods require relatively large resampling numbers to control the accuracy of the 

Monte Carlo estimation of the quantiles [26]. In addition, the Bartlett-type mean 

calibration approach only requires a mean estimation and the Monte Carlo error can be 

controlled with a relatively small number of resamplings (e.g., 200). The performances 

of the inferences were not substantially different in the numerical studies, and the mean 

calibration approach might be recommended if the computational effort is a relevant 

concern. 

    In future studies, the bias correction of the quasi-ML estimator will be a relevant 

concern because the Wald-type confidence interval failed to assess statistical errors under 

most scenarios. This issue is specifically important under separation or quasi-separation 

settings; although no relevant solutions have been found, a general theory for the ML 

estimator of GLM has been established. The Firth-type bias corrections are developed by 

Uno et al. [29], and higher-order bias correction methods [30] will also be applicable; 

they are further relevant issues. Modifications of the robust variance estimator [12] would 

be another solution. Although the accuracies achieved with the existing improved robust 

variance estimators are generally better than those achieved with the ordinary sandwich 

variance estimator, deterministic conclusions cannot be provided for their relative 

performances [12] because all the methods are founded on some approximations (e.g., 

higher-order approximations). Although simulation-based numerical evidence enables 
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case-by-case performance comparisons, these comparisons would not provide generic 

conclusions. Nonetheless, the bootstrap-based approaches proposed in this article 

effectively apply the information of the null hypothesis and adapt the higher-order 

asymptotics. We speculate that they would be one of the most effective methods among 

the methods developed thus far. We recommend the proposed methods as accurate and 

effective alternatives to the Wald-type inference methods in clinical and epidemiological 

studies. 
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Table 1. Results of the simulation studies (I): Monte Carlo estimates of coverage probabilities of the 95% confidence intervals. 

    Modified Poisson regression  Modified least-squares regression 

Pevent Ptreat OR n Wald CQLR 
QLR 

(bootstrap) 
MAQLR 

MAQLR 

(bootstrap) 
 Wald CQLR 

QLR 

(bootstrap) 
MAQLR 

MAQLR 

(bootstrap) 

               
0.4 0.2 25 40 0.925  0.941  0.939  0.896  0.944   0.899  0.957  0.957  0.943  0.954  

0.4 0.2 25 60 0.957  0.951  0.951  0.923  0.955   0.913  0.948  0.948  0.944  0.947  

0.4 0.2 25 80 0.955  0.949  0.949  0.929  0.951   0.921  0.950  0.949  0.943  0.947  

0.4 0.2 15 40 0.936  0.948  0.949  0.903  0.951   0.894  0.950  0.950  0.938  0.947  

0.4 0.2 15 60 0.945  0.943  0.942  0.917  0.948   0.914  0.947  0.947  0.938  0.945  

0.4 0.2 15 80 0.956  0.947  0.946  0.930  0.947   0.927  0.952  0.951  0.946  0.950  

0.4 0.2 5 40 0.926  0.946  0.946  0.904  0.951   0.886  0.950  0.949  0.940  0.950  

0.4 0.2 5 60 0.946  0.945  0.945  0.918  0.948   0.914  0.950  0.950  0.943  0.949  

0.4 0.2 5 80 0.957  0.954  0.953  0.936  0.956   0.924  0.951  0.950  0.945  0.949  

0.4 0.1 25 40 0.760  0.948  0.949  0.829  0.959   0.741  0.959  0.956  0.947  0.951  

0.4 0.1 25 60 0.867  0.946  0.945  0.889  0.949   0.852  0.958  0.957  0.950  0.954  

0.4 0.1 25 80 0.911  0.943  0.943  0.900  0.943   0.888  0.953  0.951  0.946  0.950  

0.4 0.1 15 40 0.750  0.949  0.945  0.818  0.953   0.749  0.958  0.955  0.948  0.951  

0.4 0.1 15 60 0.866  0.942  0.941  0.885  0.946   0.846  0.958  0.955  0.949  0.952  

0.4 0.1 15 80 0.924  0.952  0.951  0.914  0.952   0.886  0.950  0.948  0.945  0.946  

0.4 0.1 5 40 0.754  0.945  0.946  0.818  0.951   0.742  0.964  0.960  0.948  0.952  

0.4 0.1 5 60 0.865  0.940  0.942  0.879  0.944   0.848  0.958  0.957  0.952  0.955  

0.4 0.1 5 80 0.916  0.944  0.945  0.904  0.945   0.885  0.953  0.952  0.947  0.950  

               

 

  



 

 

 

Table 2. Results of the simulation studies (II): Monte Carlo estimates of coverage probabilities of the 95% confidence intervals. 

    Modified Poisson regression  Modified least-squares regression 

Pevent Ptreat OR n Wald CQLR 
QLR 

(bootstrap) 
MAQLR 

MAQLR 

(bootstrap) 
 Wald CQLR 

QLR 

(bootstrap) 
MAQLR 

MAQLR 

(bootstrap) 

               
0.2 0.2 25 40 0.789  0.946  0.941  0.783  0.955   0.860  0.973  0.959  0.940  0.958  

0.2 0.2 25 60 0.913  0.950  0.950  0.885  0.953   0.906  0.957  0.953  0.940  0.953  

0.2 0.2 25 80 0.939  0.945  0.947  0.906  0.950   0.917  0.954  0.953  0.942  0.952  

0.2 0.2 15 40 0.806  0.947  0.944  0.795  0.958   0.846  0.968  0.953  0.934  0.955  

0.2 0.2 15 60 0.907  0.946  0.945  0.877  0.952   0.904  0.957  0.955  0.942  0.956  

0.2 0.2 15 80 0.938  0.947  0.947  0.902  0.952   0.910  0.951  0.949  0.937  0.950  

0.2 0.2 5 40 0.799  0.951  0.947  0.801  0.958   0.859  0.971  0.957  0.937  0.955  

0.2 0.2 5 60 0.899  0.940  0.940  0.874  0.946   0.900  0.957  0.953  0.938  0.954  

0.2 0.2 5 80 0.937  0.944  0.946  0.905  0.952   0.910  0.948  0.947  0.937  0.948  

0.2 0.1 25 40 0.532  0.965  0.953  0.582  0.979   0.661  0.976  0.960  0.954  0.955  

0.2 0.1 25 60 0.684  0.958  0.950  0.726  0.965   0.774  0.959  0.952  0.951  0.948  

0.2 0.1 25 80 0.797  0.953  0.953  0.821  0.960   0.856  0.958  0.953  0.949  0.951  

0.2 0.1 15 40 0.542  0.959  0.950  0.595  0.974   0.669  0.972  0.954  0.951  0.950  

0.2 0.1 15 60 0.691  0.959  0.954  0.730  0.966   0.785  0.963  0.954  0.952  0.949  

0.2 0.1 15 80 0.795  0.951  0.950  0.812  0.953   0.853  0.959  0.953  0.947  0.947  

0.2 0.1 5 40 0.547  0.960  0.950  0.601  0.977   0.659  0.975  0.960  0.954  0.957  

0.2 0.1 5 60 0.696  0.958  0.951  0.738  0.965   0.789  0.962  0.954  0.952  0.950  

0.2 0.1 5 80 0.799  0.949  0.946  0.827  0.955   0.864  0.957  0.952  0.948  0.949  

               

 

  



 

 

 

 

Table 3. Results of the modified Poisson and least-squares regression analyses for the epilepsy clinical study (N = 44). 

 Age at follow up 
Gender 

(male vs. female) 

Mood disorder 

symptoms 

Graduating from 

school for special 

needs education 

     
Modified Poisson regression     

 Quasi-ML estimate 1.030 1.972 2.216 0.548 

Ordinary Wald 95%C.I. (0.983, 1.079) (0.675, 5.762) (0.492, 9.972) (0.127, 2.377) 

CQLR 95%C.I. (0.975, 1.102) (0.721, 8.776) (0.580, 8.801) (0.136, 2.407) 

QLR (bootstrap) 95%C.I. (0.975, 1.103) (0.752, 7.985) (0.594, 8.801) (0.131, 2.387) 

MAQLR 95%C.I. (0.972, 1.094) (0.761, 7.089) (0.700, 5.743) (0.200, 2.588) 

MAQLR (bootstrap) 95%C.I. (0.968, 1.119) (0.675, ∞) (0.553, 9.884) (0.030, 3.297) 

     
Modified least-squares regression     

Quasi-ML estimate 0.011 0.184 0.538 −0.189 

Ordinary Wald 95%C.I. (−0.002, 0.023) (−0.066, 0.435) (0.149, 0.928) (−0.586, 0.207) 

CQLR 95%C.I. (−0.003, 0.032) (−0.035, 0.528) (0.025, 1.000) (−1.000, 0.155) 

QLR (bootstrap) 95%C.I. (−0.003, 0.032) (−0.031, 0.529) (0.022, 1.000) (−0.727, 0.152) 

MAQLR 95%C.I. (−0.003, 0.023) (−0.029, 0.369) (0.057, 0.784) (−0.552, 0.133) 

MAQLR (bootstrap) 95%C.I. (−0.003, 0.032) (−0.029, 0.613) (0.027, 1.000) (−0.635, 0.158) 

     

 


