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ABSTRACT
With Moore’s law coming to an end, using hardware other than central processing
units (CPUs), such as more energy efficient field-programmable gate arrays (FP-
GAs), has recently been increasing. However, when using heterogeneous hardware
other than CPUs, barriers of technical skills, such as in using Open Computing Lan-
guage (OpenCL), are high. Therefore, I previously proposed environment-adaptive
software that enables automatic conversion, configuration, and high-performance
operation of once-written code according to the hardware to be placed. Offloading
of some applications to graphics processing units (GPUs) was automated previously.
In this paper, I proposed an automatic offloading method of appropriate target loop
statements of applications as the first step in offloading to FPGAs. I evaluated the
effectiveness of the proposed method by applied it to multiple applications.
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1. Introduction

Moore’s Law is ending; thus, the semiconductor density of a central processing unit
(CPU) cannot be expected to double in 1.5 years. Applications with heterogeneous
hardware such as field programmable gate arrays (FPGAs) or graphics processing
units (GPUs) are increasing. In particular, FPGAs have better power efficiency than
CPUs. For example, Microsoft’s search engine Bing tries to use FPGAs [1] to improve
search efficiency and reduce data-center energy consumption. Amazon Web Services
(AWS) provides FPGA and GPU instances using cloud technologies (e.g., [2]-[5]).

To obtain high offloading performance by effectively using heterogeneous hardware,
programmers need to program and configure considering hardware specifications and
have expert skills such as in using Open Computing Language (OpenCL) [6] and
Compute Unified Device Architecture (CUDA) [7]. These barriers are high for many
programmers.

Along with the progress in Internet of Things (IoT) technology ([8]-[15]), network-
connected devices are increasing rapidly. Connected devices have reached several tens
of billions and will reach trillions in 2030. There are various application areas of IoT
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and many IoT applications are developed using service coordination technologies (e.g.,
[16][17]).

In IoT applications, knowledge of embedded software are sometimes required for
detailed control of IoT devices. In many applications, one IoT gateway (GW) of small
computers, such as Raspberry Pi, controls many IoT devices, but design studies for
the deployed environments are needed because the resources of small computers are
limited.

In summary, systems with heterogeneous hardware, such as FPGAs, GPUs and
many IoT devices, are expected to increase; however, barriers are high to use such
hardware effectively. To remove these barriers and use heterogeneous hardware easily
and effectively, a platform is needed on which developers only write logics to be pro-
cessed so that software can adapt to the deployed environments with heterogeneous
hardware by automatic conversion and configuration.

Java, which appeared in 1995, caused a paradigm shift in environment adapta-
tion that allows codes written once to run on other vendors’ CPU machines. However,
there is no guarantee of application performance at the porting destination. Therefore,
I previously proposed environment-adaptive software, which executes once-written ap-
plications with high performance by automatic code conversion and configurations so
that FPGAs, GPUs, IoT devices or others hardware can be effectively used on de-
ployed environments. As elementary technology of environment-adaptive software, I
also achieved automatic GPU offloading of some applications software [18][19]. In this
paper, I propose a method for automatic offloading of appropriate loop statements
of application software as the first step in offloading to FPGAs, which are energy
efficient compared to CPUs. I implemented the proposed method and evaluated its
effectiveness in offloading to FPGAs using several applications.

The rest of this paper is organized as follows. In Section 2, I review current hetero-
geneous hardware technologies. In Section 3, I present my proposed automatic FPGA
offloading method for loop statements. In Section 4, I explain the implementation to
verify the proposed method’s effectiveness. In Section 5, I discuss the evaluation of
the proposed method and discuss the results. I describe related work in Section 6 and
summarize the paper in Section 7.

2. Current technologies

A typical example of environment-adaptive software is Java. Using a virtual execution
environment, i.e., Java virtual machine, once-written Java code can be run on CPU
machines of even different OSes or vendors without additional compiling (Write Once,
Run Anywhere). However, it has not been considered whether high performance of
application can be achieved at the porting destination, and developers’ workload, such
as debugging and performance tuning, at the porting destination is huge (Write Once,
Debug Everywhere). If applications use heterogeneous hardware, such as FPGAs, this
workload increases even more.

To control heterogeneous hardware uniformly, OpenCL specifications are used and
its SDK has become widespread. For general purpose GPUs that use GPU parallel
computation power not only for graphics processing (e.g., [20]) but also for other pur-
poses, CUDA is a major environment. OpenCL and CUDA need not only C language
extension grammars but also additional hardware-oriented descriptions such as mem-
ory copy between FPGA devices and CPUs. Because of these difficulties, there are few
OpenCL or CUDA programmers.
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Comparing to OpenCL, for easy use of heterogeneous hardware, there are technolo-
gies that specify parallel processing areas by specified directives, and compilers convert
these codes into device-oriented codes based on specified directive meanings. Open Ac-
celerators (OpenACC) is an example of a directive-based specification [21], and the
Portland Group (PGI) compiler is an example of a directive-based compiler [22]. For
example, users specify OpenACC directive ”#pragma acc kernels” on Fortran/C/C++
codes to process them in parallel, and the PGI compiler checks the parallel processing
possibility and outputs and deploys binary files to execute on CPUs and GPUs. For
Java, IBM JDK supports offloading to GPUs based on a Java lambda expression [23].

In this way, OpenCL, CUDA, OpenACC and other technologies enable offloading to
FPGAs or GPUs. Although offloading to FPGAs or GPUs can be done, high offload-
ing performance of application is difficult to achieve. For example, there are automatic
parallelization technologies, such as the Intel compiler [24], for many-core CPUs. They
are used to extract possible areas of parallel processing such as for and while loop state-
ments. However, naive parallel processing performance with FPGAs or GPUs is not
high because of overheads of CPU and FPGA/GPU device memory data transfer. To
achieve high offloading performance of application with FPGAs/GPUs, highly skilled
programmers need to tune using OpenCL/CUDA or appropriate offloading areas need
to be searched for.

Thus, it is difficult for programmers without OpenCL or CUDA skills to obtain high
offloading performance of application by using FPGAs or GPUs. Moreover, if program-
mers use automatic parallelization technologies to achieve high offloading performance
of application, it takes a long time of try and error for each loop statement is improved
or not by parallelization.

3. Proposal of automatic offloading method of loop statements to FPGA

3.1. Flow of environment-adaptive software

To achieve software adaptation to environments, I previously proposed environment-
adaptive software, the flow of which is shown in Figure 1 (the steps are listed below).
This environment-adaptive software is executed with an environment-adaptation func-
tion, which is the main function, verification environment, production environment,
test case database (DB), code pattern DB, facility resource DB.

Step 1: Code analysis
Step 2: Offloadable part extraction
Step 3: Search for suitable offloading parts
Step 4: Resource-amount adjustment
Step 5: Placement-location adjustment
Step 6: Execution-file placement and operation verification
Step 7: Reconfiguration during operation
In Steps 1-7, the processing flow for environment adaptation is carried out with

code conversion, resource-amount adjustment, placement-location adjustment, and re-
configuration during operation. Here, operation verification is conducted using cloud
automatic verification technologies such as [25][26]. However, it is also possible to ex-
tract only some of the steps of environment adaptation. For example, if we only want
to convert code for an FPGA, we only need to conduct Steps 1-3.
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Figure 1. Flow of environment-adaptive software

3.2. Considerations for automatic offloading to FPGA

For code analysis (Step 1), parse and analysis of application code is executed using
a parsing tool such as Clang. Code analysis is difficult to generalize because it is
necessary to consider devices to be offloaded. However, in this step, it is necessary
to understand the structure of the source code such as loop statements, reference
relations with the variables, and function blocks of specified processing or calling a
specified function library such as fast Fourier transform (FFT) processing. It is difficult
for a machine to detect function blocks automatically; thus, I use similarity-detection
tools such as Deckard to judge code similarity. Clang is a tool for C/C++; thus, it is
necessary to choose a tool suited to the language to be parsed.

In Steps 2-3, it is necessary to consider extraction and search according to the offload
destination, such as an FPGA, GPU, or IoT GW; thus, it is assumed that processing
functions are plugged in for each offloading destination. It is generally difficult to au-
tomatically detect the configuration that will enable maximum offloading performance
at one time; thus, we repeatedly try the offload patterns in the verification environ-
ment several times to detect an appropriate offload pattern by using an evolutionary
computation method. I achieved automatic offloading to GPUs for some applications
in a previous study [18]. Therefore, this paper is focused on offloading of application
software to FPGAs.

Applications that users want to offload are various. However, typical processing
that requires a large amount of computation time has many loops such as image
analysis for movie processing and machine-learning processing for analyzing sensor
data. Therefore, the first target to offloading to FPGAs is also loop statements.

However, high offloading performance requires pipeline and/or parallel processing
of appropriate areas. In particular, because of memory data transfer between a CPU
and FPGA, offloading performance sometimes does not improve unless the data size
or number of loops is sufficiently large. Because the clock speed of an FPGA is slower
than that of a CPU, non-suitable computation for FPGA does not improve offloading
performance.

Moreover, combinations of individual loop statements that can be accelerated by
pipeline processing sometimes does not enable maximum offloading performance con-
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figurations depending on memory process status and timing of data transfers. For
example, when #1, #3, and #5 loop statements can be accelerated by pipeline pro-
cessing compared with with CPU processing in 5 loop statements, a three-pipeline
combination of #1, #3, and #5 is not always the fastest configuration.

For offloading to GPUs, OpenACC only specifies the #pragma acc kernels directive
so that specified loop statements can be executed on a GPU or CUDA can describe
more detail control. To control an FPGA, OpenCL can be used to describe detailed
control similar to using CUDA, and high level synthesis (HLS) tools can specify more
abstract control similar to using OpenACC. The following ten description steps are
needed for OpenCL. (1. Prepare devices. 2. Prepare kernels. 3. Allocate devices mem-
ory. 4. Transfer data from hosts to devices. 5. Configure variables of kernel functions.
6. Execute kernel functions. 7. Transfer data from devices to hosts. 8. Release devices
memory. 9. Release kernels. 10. Release other objects such as devices.) Each vendor
HLS has a different specification, but it can control an FPGA more abstractly. For
example, Xilinx Vivado HLS specifies FPGA processing by #pragma HLS PIPELINE,
#pragma HLS UNROLL, and so on, similar to using OpenACC. Intel FPGA SDK for
OpenCL recognizes not only the OpenCL standard but also other extensions such as
#pragma directives.

To extract appropriate offloading areas from general CPU programs automatically,
I previously checked all loop statements to determine whether they can be processed
then executed performance verification repeatedly in the verification environment us-
ing the genetic algorithm for processable loop statements to search for the appropriate
offload pattern [18]. However, code compiling to an FPGA usually takes several hours,
and performance measurements of many patterns, such as those in my previous study
[18], are difficult. Therefore, it is assumed that the number of performance measure-
ments will be reduced after narrowing down the patterns for offloading performance
measurements with actual FPGAs.

3.3. Proposed automatic offloading method

Based on above considerations, I propose an offloading method of loop statements to
FPGA.

The method first parses source codes to be offloaded. It then grasps the loop state-
ments and variable information according to the language of the source codes.

Next, a process to narrow down candidates is performed for whether or not to try
offloading loop statements to FPGAs. Arithmetic intensity can be one indicator of
whether a loop statement has an offloading effect. Arithmetic intensity increases when
the number of calculations are large and decreases when the number of data accesses
is large. Processing with high arithmetic intensity is heavy for the processor and takes
time. Therefore, an arithmetic intensity analysis tool analyzes the arithmetic intensity
of a loop statement and narrows down the high-intensity loop statements as offloading
candidates. However, arithmetic intensity ignores loop numbers; thus, we may also
check loop numbers by using profiling tools.

Even if there is a high arithmetic intensity and a large number of loops in a loop
statement, it is problem that a large amount of FPGA resources are consumed. There-
fore, we move on to estimating the amount of resources when offloading loop statements
to FPGAs. When compiling to an FPGA, a program is converted from a high-level
language, such as OpenCL, to a hardware-level language, such as HDL, and actual
wiring processing is carried out based on the hardware-level language. At this time,
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wiring processing takes much time, but it takes only a minute to extract the HDL
as the intermediate state. Since resources, such as flip flop and look up table, used
in FPGAs can be estimated at the HDL level, the amount of resources used can be
determined in a short time even if compiling is not completed. Since the target loop
statement is converted into a high-level language and the resource amount is calcu-
lated from OpenCL, the arithmetic intensity, loop number, and resource amount when
the loop is offloaded are determined. With this method, the loop statements with high
resource efficiency are further narrowed down as offload candidates. High resource ef-
ficiency means that arithmetic intensity/resource amount or arithmetic intensity*loop
number/resource amount is high.

Two processes are required to convert a loop statement into a high-level language.
One is to divide a CPU processing program into a kernel (FPGA) program and host
(CPU) program based on the syntax of the high-level language. The other is to in-
clude techniques for accelerating loop statements. There are techniques for accelerating
loop statements using FPGAs such as local memory cache, stream processing, mul-
tiple instantiation, loop statement expansion, integration of nested loop statements,
and memory interleaving. Depending on the loop statement, these may not have an
absolute effect but are often used for accelerating loop statements.

Next, because some loop statements with high resource efficiency are selected, sev-
eral offloading patterns that measure the offloading performance using these loop state-
ments are generated. There are several types for accelerating loop statements in FP-
GAs, one type is accelerating them by concentrating the amount of FPGA resources
to one loop statement, and the other is accelerating them by distributing FPGA re-
sources to multiple loop statements. The proposed method generates patterns for the
selected loop statements, compiles them to run on an FPGA, and measures the of-
floading performance. The method then generates combination patterns for individual
loop statements that can be accelerated, and measures the offloading performance in
the same manner.

Finally, a high-speed pattern is selected as the solution among the multiple patterns
whose performance has been measured in the verification environment.

Therefore, the method focuses on loop statements with high arithmetic intensity,
loop number, and resource efficiency, creates offloading patterns, and searches for
patterns at high speed through actual measurements in the verification environment
(Figure 2).

4. Implementation

In this section, I explain the implementation of the proposed method. To confirm the
method’s effectiveness, I used C/C++ language applications for offloading applications
and Intel PAC with an Intel Arria10 GX FPGA for FPGA. I also conducted a compiling
on DELL EMC PowerEdge R740 with Intel Xeon Bronze 3104 /1.70 GHz CPU and
32GB RDIMM DDR4-2666 *2 RAM.

To control the FPGA, I used Intel Acceleration Stack Version 1.2 with Intel FPGA
SDK for OpenCL 17.1.1 and Quartus Prime Version 17.1.1. Intel FPGA SDK for
OpenCL is a HLS tool that compiles #pragma directives in addition to the standard
OpenCL. It compiles OpenCL code that describes the kernel program processed by
the FPGA and the host program processed by the CPU, outputs information such as
the amount of resources, and performs FPGA wiring to operate the code using the
FPGA. Even a small program of about 100 lines takes about 3 hours to be able to
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Figure 2. Proposed automatic offloading method of loop statements to FPGA

run on an actual FPGA, but an error occurs early when the amount of resources is
exceeded of resource size of Arria10 FX FPGA. With OpenCL code that cannot be
processed by an FPGA, an error is output after several hours.

I now explain the outline of the implementation in which I used Python 2.7.
When a C/C++ application is specified, the implementation analyzes C/C++ code,

detects ”for” loop statements, and detects the program structure such as variable data
used in the ”for” statements. For parsing, the python program uses parsing libraries
of LLVM/Clang 6.0 libClang python binding.

Next, the implementation executes the arithmetic intensity analysis tool to deter-
mine the possibility of the offloading effect of each loop statement to the FPGA and
obtain an index of arithmetic intensity. Only the number of top A loop statements
with the highest arithmetic intensity are targeted. ROSE framework 0.9 is used for
arithmetic intensity analysis. Although this framework has many functions, it can be
used for arithmetic intensity analysis only. This implementation also executes the pro-
filing tool to obtain the repeat number of loops of a loop statement. Gcov is used for
profiling in this implementation; Gprof can be also used. The implementation narrows
down the number of target loop statements with high arithmetic intensity and high
loop numbers.

The implementation then generates offloading OpenCL code for candidate loop
statements to be offloaded to the FPGA. The OpenCL code is divided into the loop
statement as an FPGA kernel and the rest as a CPU host program. When the FPGA
kernel code is generated, the loop sentence is expanded by a certain number B as an
acceleration technique. The loop-statement expansion process increases the amount
of resources, but is effective for accelerating some loop statements. The number of
expansions is limited to a fixed B, and the amount of resources does not become
enormous.

The implementation then pre-compiles the A OpenCL codes using Intel FPGA
SDK for OpenCL and calculates the amount of resources, such as flip flop and look
up table, to be used. The amount of resources used is displayed as a percentage of
the total resource amount. The resource efficiency of each loop statement is calculated
from the arithmetic intensity and resource amount. For example, a loop statement
with an arithmetic intensity of 10 and resource amount of 0.5 has a resource efficiency
of 10/0.5=20. A loop statement with a arithmetic intensity of 3 and a resource amount
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of 0.3 has a resource efficiency of 3/0.3=10; the former is high. In loop statements, the
implementation selects C OpenCL codes with high resource efficiency.

Next, the implementation generates patterns to be measured using selected C loop
statements as candidates. For example, if #1, #3, and #5 loops are highly resource effi-
cient, the implementation generates and compiles OpenCL patterns with #1 offloaded,
#3 offloaded, and #5 offloaded. In the first measurement, the implementation gener-
ates patterns within D and conducts performance measurements on a server with the
FPGA in the verification environment. For offloading performance measurement, the
sample processing specified by the application to be accelerated is conducted. For ex-
ample, in the case of an application of Fourier transform, the offloading performance is
measured using transform processing with sample data as a benchmark. If #1 and #3
offloading can be accelerated, the implementation generates a pattern with both #1
and #3 offloaded in the second measurement. Note that when generating a combina-
tion of individual loops, the amount of resources is also increased, so if the combination
pattern does not fit within the upper limit of resource size, it is not generated.

The implementation finally selects the maximum offloading performance pattern
from several measured patterns.

5. Evaluation

5.1. Evaluation method

5.1.1. Evaluated applications

I evaluated three applications, signal processing of a time-domain finite-impulse re-
sponse filter, image processing of magnetic resonance imaging Q (MRI-Q), and matrix
calculation of symmetric matrix-multiply (Symm).

The time-domain finite-impulse response filter performs processing in a finite time
on the output when an impulse function is input to a system. There are various
implementations of this filter. I used [27] C code and sample tests with it for offloading
performance measurement. When considering applications that transfer signal data
from IoT devices over the network, to reduce network costs, it is assumed that signal
processing such as filters are conducted on IoT devices sides. Thus, I think the proposed
method has a wide range of applications regarding signal processing.

MRI-Q [28] computes a matrix Q, representing the scanner configuration for cal-
ibration, used in 3D MRI reconstruction algorithms in non-Cartesian space. In an
IoT environment, image processing is often necessary for automatic monitoring from
camera videos, and performance enhancements are requested in many cases. During
application performance measurement, MRI-Q executes 3D MRI image processing to
measure processing time using 64*64*64 size sample data.

Symm [29] is a benchmark of Polybench for symmetrix matrix multiply calculation.
Matrix multiply is frequently used for manual GPU or FPGA acceleration using CUDA
or OpenCL; thus, I used it to confirm whether matrix calculation can be accelerated
with the proposed method. During application performance measurement, Symm exe-
cutes matrix multiply calculation to measure processing time using 1,024*1,024 matrix
size sample data.
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Figure 3. Experimental environment

5.1.2. Experimental conditions

For automatic offloading to an FPGA, I did not conduct many performance mea-
surements, as in a previous study on automatic offloading to a GPU [19]. In the
verification of the proposed method, the offloading performance measurement results
of the sample tests with multiple offload patterns in the verification environment were
recorded together with intermediate information such as arithmetic intensity, resource
efficiency, and HDL-related information during compilation. Through offloading per-
formance measurement, the highest performance pattern was the search solution. The
performance of the solution was compared by to performance of all CPU processing.

The experimental conditions were as follows.
Offloading target number (number of loop statements): 6 for the time-domain finite-

impulse response filter, 16 for MRI-Q and 9 for Symm.
Narrowing down using arithmetic intensity: Narrow down to the top five loop state-

ments of arithmetic intensity.
Number of loop-statement expansions: 1. Expansion processing and multiple instan-

tiations may accelerate offloading performance but the amount of FPGA resources are
increased. Thus, in this verification, I confirmed the effectiveness of offloading to an
FPGA with OpenCL without expansions.

Narrowing down using resource efficiency: Narrow down to the top three loop state-
ments in resource efficiency analysis. The implementation selects the top three loop
statements with high arithmetic intensity/resource amount in this verification.

Number of measured offload patterns: 4. In the first measurement, the top three
loop statement offload patterns were measured. Then, the second measurement was
measured with the combination pattern of two loop statement offloads that were high
performance at the first measurement.

5.1.3. Experimental environment

I used physical machines with Intel PAC with an Intel Arria10 GX FPGA for offloading
verification and Intel Acceleration Stack Version 1.2 for FPGA control. Figure 3 shows
the experimental environment and specifications. A client note PC specifies C/C++
application codes, codes are tuned by trial and error on a verification machine, and
final codes are deployed in a running environment for users.

5.2. Performance results

I confirmed automatic acceleration of several applications to FPGAs.
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Figure 4. Application performance improvement with proposed method

Figure 4 shows the measurement results of how much application performance im-
proved with the proposed automatic offloading method. Figure 4 shows how many
times the performance of the final solution was higher than that of all CPU pro-
cessing. The proposed method improved application performance by 4.0 times for the
time domain finite impulse response filter. For MRI-Q, the proposed method improved
application performance by 7.1 times, and for Symm, it improved application perfor-
mance by 1.3 times. It took about half a day to automatically verify four offload
patterns because it takes about 3 hours to compile one offload pattern.

5.3. Discussion

My previous study [19] confirmed that application performance improved 3-5 times
for large applications, such as Darknet, which has more than 100 loop statements and
NAS.FT. In this study, the proposed method improved offloading performance by 4
times for signal processing and 7 times for image processing.

I now discuss cost effectiveness. FPGA boards, such as Intel Arria, cost about 3,000
USD. Therefore, FPGAs costs about twice as much as hardware with CPUs. In data
centers, hardware, development, and verification costs of a system, such as a cloud
system, is generally about 1/3 the total cost; electricity and operation/maintenance
costs are more than 1/3, and other expenses, such as service orders, is the final 1/3.
In the AWS case, a FPGA instance with one FPGA costs about 1188 USD/month,
which is the same as hosting a general dedicated server. Therefore, I think improving
offloading performance with several times in loop statements of applications that take
much time will have a sufficiently positive cost effect even though the hardware price
doubled.

I will now discuss time to start production services. Unlike offloading to GPUs, FP-
GAs takes a long time to compile, so the solution search time varies greatly depending
on the number of performance measurements. From this evaluation, by setting the
number of performance measurements to about 4, a certain amount of acceleration
can be achieved with half a day of verification. When service providers provide pro-
duction IoT or cloud services, we provide the first day for free and try to accelerate
application performance in the verification environment during the first day. From
the second day, we provide production service using FPGAs. Therefore, I think that
one-day automatic offloading is acceptable.

Next, I compare manual and automatic FPGA offloading. When manually acceler-
ating application performance with FPGAs, programmers analyze and design which
loop statement is processed on FPGAs, use OpenCL or HDL, and verify offloading
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performance by compiling on an FPGA. However, since there is no fixed way of accel-
erating application performance using FPGAs by applying a fixed method, trial and
error is required currently. When my co-worker of NTT laboratories manually accel-
erates the finite impulse response, it takes about 20 days because of several trials and
errors. Therefore, one or half day automation is effective with regard to programmer
workload.

To search for an offloading pattern within a shorter time, we can process each
pattern-performance measurement on multiple machines in parallel. In addition, pa-
rameter tuning, such as threshold of arithmetic intensity, is also needed.

Even though the programmer workload is low, there are some applications in which
automatic improvement in offloading performance with the proposed method may not
be sufficient compared to manual improvement. There are two directions for further
improving offloading performance.

First, we apply several techniques of improving offloading performance when creat-
ing OpenCL descriptions. When offloading a loop statement using OpenCL, there are
common techniques for accelerating the local memory cache, stream processing, mul-
tiple instantiation, loop-statement expansion, integration of nested loop statements,
memory interleaving, and so on. For example, multiple instances may be accelerated
depending on the amount of resources, and it is possible to set an appropriate resource
size in consideration of the amount of available resources.

Second, we offload in units of larger function blocks rather than in each loop state-
ment. For FPGA acceleration, it is often the case that an algorithm for a CPU is
changed to an algorithm suitable for hardware processing. For example, in matrix
multiplication, there is an example in which data A are read in the row direction, data
B are read in the column direction, and the local memory with limited capacity is
used efficiently. In addition to loop-statement offloading, I am also studying offloading
to the existing implemented FPGA IP core in units of large function blocks such as
matrix multiplication and FFT calculation.

6. Related work

Wuhib et al. studied resource management and effective allocation [30] on the Open-
Stack [31] cloud. The proposed method is effective for network-wide resource manage-
ment and allocation including the cloud, but it focuses on appropriate offloading on
heterogeneous hardware servers. I previously proposed a method of selecting appro-
priate servers from heterogeneous hardware servers [32] based on cloud servers perfor-
mances, but the proposed method for this paper can offload logic parts of applications
automatically and is novel for this reason.

There have been many studies on FPGA offloading [33][34][35][36]. Liu et al. [33]
proposed a method of offloading nested loops to an FPGA and found that nested
loops can be offloaded with an additional 20 minutes of manual work. Alias et al.
[34] proposed a method with which an HLS tool configures an FPGA by specifying
C language code, loop tiling, and so on when using Altera HLS C2H. The method
proposed by Sommer et al. [35] can be used to interpret OpenMP code and perform
FPGA offloading. Putnum et al. [36] used a CPU-FPGA hybrid machine to accelerate
a program with a slightly modified standard C language. These methods require man-
ually adding instructions such as which parts to parallelize using OpenMP or other
specifications. There have been few studies on automatically offloading existing codes
to FPGAs.
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To control FPGAs, development tools of OpenCL for FPGAs are provided by Al-
tera and Xilinx. Automatically offloading not only loop statements but also various
application logics is difficult for machines because it is similar to recognizing code
meaning. On the other hand, FPGAs have been accelerated on the basis of program-
mers’ expertise, such as FFT acceleration. Therefore, to use existing technique, there
is a method [37] with which providers prepare well-known offloading patterns in a DB.
When applications have well-known processing such as FFT, the processing is changed
to call an FPGA by extracting OpenCL of offloading patterns from the DB.

Generally, CUDA and OpenCL control intra-node parallel processing, and Mes-
sage Passing Interface (MPI) controls inter-node or multi-node parallel processing.
However, MPI also requires high technical skills in parallel processing. Thus, MPI
concealment technology has been developed that virtualizes devices of outer nodes
as local devices and enables devices of outer nodes to be controlled by only OpenCL
[38]. When we select multi-nodes for offloading destinations, we plan to use this MPI
concealment technology.

Even if an extraction of an offloading area is appropriate, offloading performance of
application may not be high when the resource balance of a CPU and devices is not
appropriate. For example, a CPU takes 100 seconds and FPGA 1 second when one task
is processed, so a CPU slows processing. Shirahata et al. [39] attempted to improve
total offloading performance by distributing Map tasks with the same execution times
of a CPU and GPU in MapReduce processing. Referring to that study, I will study how
to deploy functions on appropriate locations and resource amounts to avoid bottlenecks
of any hardware.

There have been many studies on using FPGAs to achieve high offloading perfor-
mance for many high arithmetic intensity applications such as fluid calculation and
game algorithm processing. Automatic offloading is common for automatic paralleliza-
tion compilers like the Intel compiler for multicore CPUs. However, there have not been
any studies that involved automatic offloading performance evaluations with several
candidate offloading areas and offloading general large applications to FPGAs.

7. Conclusion

I previously proposed environment-adaptive software that adapts applications to the
deployed environments to effectively use heterogeneous hardware such as FPGAs and
GPUs. As an elementary technology of this, I proposed and evaluated an automatic
FPGA offloading method for loop statements of software codes. It is often said that
FPGAs are more energy efficient than CPUs.

The proposed method is the same as the offloading method to GPUs [19] until loop
statement detection by analyzing the source code. However, it takes a long time to
compile to an actual FPGA. To cope with long time compile, the loop statements of
offloading candidates are narrowed down before the actual measurement trials are con-
ducted. To detect loop statements, a loop statement having a high arithmetic intensity
is extracted using an arithmetic intensity analysis tool. Then, pre-compile is carried
out to conduct offloading to an FPGA such as expansion processing for loop state-
ments with high arithmetic intensity. This finds a loop statement with high resource
efficiency and high arithmetic intensity. For the narrowed-down loop statements, our
method generates OpenCL codes that offload each loop statement or a combination
of those loop statements, compiles them on the FPGA, measures the offloading per-
formance of application, and selects the highest-performance OpenCL code as the
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solution.
I evaluated the proposed method to automatically offload loops statements of several

applications to an FPGA. In the future, I will evaluate the energy efficiency of the
proposed method and study not only loop-statement but also function-block offloading
such as FFT functions.
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