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ABSTRACT
With the slowing down of Moore’s law, the use of hardware other than CPUs, such
as graphics processing units (GPUs) or field-Programmable gate arrays (FPGAs),
is increasing. However, when using heterogeneous hardware other than CPUs, bar-
riers to technical skills, such for compute unified device architecture (CUDA) and
open computing language (OpenCL), are high. Therefore, I previously proposed en-
vironment adaptive software that enables automatic conversion, configuration, and
high-performance operation of once written code according to the hardware to be
placed. As part of environment adaptive software, I also proposed a method to
offload loop statements of applications to GPUs automatically. In this paper, I im-
proved upon this automatic GPU offloading method to expand its applicability to
more applications and enhance offloading performance. I implemented the improved
method to evaluate its effectiveness for multiple applications.

KEYWORDS
Environment Adaptive Software; GPGPU; Automatic Offloading; Performance;
Evolutionary Computation

1. Introduction

Moore’s Law will end shortly, and transistor density cannot be expected to double in
1.5 years. Based on this situation, system usages of heterogeneous hardware, such as
graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) are
increasing. Some providers use special servers with powerful GPUs for mining Bit-
coin or special servers with FPGAs to accelerate specific signal processing of network
function virtualization (NFV). Amazon Web Services (AWS) [1] provides GPUs and
FPGAs using cloud technologies (e.g., [2]-[8]), and Microsoft’s search engine Bing uses
FPGAs [9].

However, to achieve high application performance using heterogeneous hardware for
various applications, developers need to program and configure appropriately consid-
ering hardware and need to be skilled in technologies such as compute unified device
architecture (CUDA) [10], open computing language (OpenCL) [11] and open multi-
processing (OpenMP) [12]. This prevents easy utilization of heterogeneous hardware.

Due to the progress in Internet of Things (IoT) technology (e.g., Industrie 4.0 and so
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on [13]-[18]), IoT devices are increasing rapidly. There are various application fields of
IoT such as manufacturing, distribution, medical, and agriculture. In IoT applications,
knowledge of embedded software and assembly are required for detailed control of IoT
devices.

Expectations of applications using heterogeneous hardware, such as GPUs and FP-
GAs, and many IoT devices are increasing; however, the hurdles are currently high
for using them. To break down such a barrier, I think it is required that application
programmers only need to write logics to be processed, then software will adapt to the
environments with heterogeneous hardware to make it easy to use such hardware and
IoT devices. Java [19] caused a paradigm shift in environment adaptation by allowing
software written once to run on different CPU architectures. However, no consideration
was given to application performance.

I previously proposed environment adaptive software that effectively runs once-
written applications by automatically executing code conversion and configurations so
that GPUs, FPGAs, and IoT devices can be effectively used on deployment environ-
ments [20]. Even if the performance is not so high compared to manual tuning of hihgly
skilled engineers, automation is important, I think. As part of environment adaptive
software, I also proposed a method to offload loop statements of applications to GPUs
[21] and FPGAs [22] automatically. In this paper, I improved upon the GPU offloading
method, which I previously proposed using evolutionary computation [20][21], to be
applied to more applications with higher performance. I implemented this method and
evaluated its effectiveness for several applications.

The rest of this paper is organized as follows. In Section 2, I review current hetero-
geneous hardware technologies. In Section 3, I present the improved GPU offloading
method to resolve the problems with the original. In Section 4, I explain its implemen-
tation and discuss its evaluation and the results in Section 5. In Section 6, I mention
related work and conclude the paper in Section 7.

2. Current heterogeneous hardware technologies

Java [19] is one example of environment adaptive software. By using a virtual execution
environment called Java Virtual Machine, written software can be to run even on
machines of different OS without compiling (Write Once, Run Anywhere). However,
it was not considered whether the expected application performance could be attained
at the porting destination, and much effort was needed for performance tuning and
debugging at the porting destination (Write Once, Debug Everywhere). If software
uses heterogeneous hardware, tuning becomes more difficult.

CUDA is a major development environment for general purpose GPUs (GPGPUs)
that use GPU computational power not only for graphics processing (e.g., [23]). To
control heterogeneous hardware such as GPUs, FPGAs, and many core CPUs uni-
formly, OpenCL specifications and its software development kit (SDK) are widely
used. CUDA and OpenCL need not only a C language extension but also additional
descriptions such as memory copy between GPU or FPGA devices and CPUs. Because
of these programming difficulties, there are few CUDA and OpenCL programmers.

For easy heterogeneous hardware programming, there are technologies that specify
parallel processing areas by specified directives, and compilers transform these direc-
tives into device-oriented codes on the basis of specified directives. Open accelerators
(OpenACC) [24] is a directive-based specification, and the PGI compiler [25] is a
directive-based compiler. For example, users specify OpenACC directives on C/C++
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codes to process them in parallel, and the PGI compiler checks the possibility of par-
allel processing and outputs and deploys execution binary files to run on GPUs and
CPUs. IBM JDK supports GPU offloading based on a Java lambda expression [26].

CUDA, OpenCL, OpenACC, and others support GPU or FPGA offload processing.
Although processing on a GPU or FPGA can be done, sufficient offloading perfor-
mance is difficult to attain. For example, when users use an automatic parallelization
technology such as the Intel compiler [27] for a multicore CPU. The Intel compiler
specifies whether to process for loop statements that can be parallelized in parallel,
but if we simply specify it, it will often be slower. Naive parallel execution performance
with GPUs or FPGAs is not high because of the overheads of CPU and GPU/FPGA
memory data transfer. To achieve high application performance with GPUs/FPGAs,
CUDA/OpenCL needs to be tuned by highly skilled programmers or an appropriate
offloading area needs to be searched for using the PGI compiler or other compilers.

Therefore, it is difficult for users without GPU or FPGA skills to attain high of-
floading performance. Moreover, if users use automatic parallelization technologies to
attain high offloading performance, it takes a long time of trial and error to determine
if each loop statement is parallelized, and there are many applications that cannot be
improved.

In my previous studies, I attempted to automate the trial and error of parallel
processing areas [20][21]. Loop statements suitable for GPU offloading were extracted
appropriately by repeating the performance measurements in the verification envi-
ronment using evolutionary computation, and as many variables in the nested loop
statements as possible were transferred in the upper loop. However, when considering
actual use, there were two problems, i.e., the accelerated applications were limited,
and performance improvements were insufficient compared to manual acceleration us-
ing CUDA.

3. Improvement of automatic GPU offloading method for loop statements

3.1. Processing flow of environment adaptive software

To adapt software to an environment, I previously proposed environment adaptive soft-
ware, as shown in Figure 1. The environment adaptive software is realized in coopera-
tion with functions including an environment adaptation function, a test-case database
(DB), code-pattern DB, facility-resource DB, verification environment, and production
environment. The environment adaptation is processed with following steps.

Step 1: Code analysis:
Step 2: Offloadable part extraction:
Step 3: Search for suitable offload parts:
Step 4: Resource-amount adjustment:
Step 5: Placement-location adjustment:
Step 6: Execution-file placement and operation verification:
Step 7: In-operation reconfiguration:
In Steps 1 to 7, the processing flow for executing code conversion, resource-amount

adjustment, placement-location adjustment, and in-operation reconfiguration for en-
vironment adaptation are carried out. It is possible to skip some of the steps. For
example, if we only want to convert code for a GPU, we only need to conduct Steps 1
to 3. We can use only the necessary processing of the environment adaptation function.
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Figure 1. Processing flow of environment adaptive software

3.2. Previous automatic GPU offloading method and its problems

I now explain my previous automatic GPU offloading method. There are two main
features for applications offloading. The first one is the loop statements suitable for
a GPU are extracted using evolutionary computation [21] of the genetic algorithm
(GA) [28], and the variables used in nested loop statements are transferred between
the CPU and GPU in the outer-most loop possible [20].

The applications that users want to offload are various. However, typical applications
that require a large amount of computation time, such as image analysis for video
processing, machine-learning processing for analyzing sensor data, and loop processing,
often take a long time. Therefore, our GPU offloading targets are also loop statements.

It is currently possible for compilers to find the restriction that avoid these loop
statements to be processed in parallel on a GPU, but it is difficult to determine if
these loop statements are suitable for GPU parallel processing. Loops with a high
arithmetic intensity, such as a large number of repetitions, is generally suitable; how-
ever, it is difficult to predict how much offloading performance can be attained without
actual performance measurements using a GPU. Because th memory differs between
CPU and GPU, so the performance greatly depends on the timing of data transfer
and calculation processing on GPU core. Therefore, there are many cases in which an
instruction to offload this loop to a GPU is given manually, and performance measure-
ment is executed by trial and error.

Based on this situation, I previously argued that the GA automatically finds an
appropriate loop statement to be offloaded to a GPU [21] (Figure 2). First, paralleliz-
able checks are conducted from a general purpose program that is not supposed to be
parallelized, and loop statement offload patterns are mapped to genes with a value of 1
set for GPU execution and 0 for CPU execution. Then, performance-verification trials
are repeated in a verification environment to search for an appropriate offloading area.
Since this method searches for faster offload patterns in the verification environment
recursively, it cannot be slow from the original pattern in principle. Patterns that can
be efficiently accelerated from the enormous amount of parallel processing patterns are
searched by holding and recombining better parallel processing patterns in the form
of genes after focusing on parallel loop statements.

In addition to the appropriate extraction of loop statements, I previously proposed
to transfer as many variables used in the nested loop statements as possible to the
upper level loop to reduce the number of transfers between CPU and GPU [20]. When
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Figure 2. Image of GPU offloading area search

offloading a loop statement to a GPU with a naive method, if CPU-GPU transfer is
executed at the lower level of nesting, transfer is done at each lower-level loop, which
is not efficient. The cause of long processing time is often nested loops. This shows the
effect on offloading performance improvement by reducing the number of CPU-GPU
transfers.

Whether variables can be collectively transferred from the CPU to the GPU depends
on the overall configuration including other loops, so GPU processing of each loop
cannot be independent. Since the offload patterns of loop execution and variables
transfer become enormous depending on the loop statements number, GA is used to
find some extent offload pattern at a high speed.

Based on these two ideas, I confirmed automatic performance improvements even
for medium-scale applications with more than 100 loop statements. However, there
were two issues when considering practical use; 1) insufficient performance and 2)
insufficient applicable applications.

In terms of performance improvement, there are many applications in which auto-
matic performance improvement using OpenACC is not sufficient compared to man-
ual improvement using CUDA. With CUDA-acceleration methods, CPU-GPU data
transfer reduction, appropriate use of multiple memories (shared, constant, texture,
local, and global), coreless access, suppression of a branch in Warp of CUDA, high
occupancy by Warp simultaneous multi-threading, task parallelization by stream pro-
cessing, parallelization granularity tuning suitable for the number of threads, and so
on are carried out. Of course, changing to parallel processing from serial processing is
a major premise. The important tuning point is the reduction of CPU-GPU transfer
rather than memory allocation in a GPU due to absolute values of the transfer speed.

There are some applications that cannot be used because many errors occur at
compiling before GA of my implementation tools [20]. [20] used only #pragma acc
kernels that handle single and tightly nested loops were targeted, and for statements
of non-tightly nested loops resulted in errors when #pragma acc kernels were added.
As a result, applications with many non-tightly nested loops have not been able to start
GA. In the next subsection, I examine the expansion of directives so that instructions
can be given to loop statements that were excluded in previous studies due to errors
of instructing GPU processing.
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3.3. Reduction in number of CPU-GPU transfers and expansion of GPU
processing directives

First, to reduce CPU-GPU data transfers more, we match many variable transfer times
and reduce transfers that compilers automatically transfer. CPU-GPU transfer occurs
when loop statement processing is offloaded to a GPU, but offloading performance can
be increased by reducing the number of transfers with time matching and unnecessary
transfer preventions.

To reduce the number of CPU-GPU transfers, not only the nesting loops but also
the variables that summarize the transfer time to a GPU are transferred in a batch.
For example, unless the result of GPU processing can be processed by the CPU and
processed again by a GPU, it may be possible to define variables by the CPU used
in multiple loop statements that are transferred in batch to the GPU before GPU
processing begins and return to the CPU after all GPU processing is complete. Since
the reference relationship of variables can be understood during code analysis, when
variables defined in multiple files are used separate CPU and GPU processes and not
staggered, these variables are specified batch transfer using OpenACC ”data copy” and
”update”. In addition, variables that are transferred in a batch and do not need to
be transferred at that time are clearly indicated using the directive of ”data present”.
”Present” is a clause that a GPU already has a variable.

We then consider reducing the number of transfers that compilers may transfer auto-
matically. For example, Figure 3 shows the case of a PGI compiler that is well-known as
an OpenACC compiler. If GPU processing is simply specified in the #pragma acc ker-
nels clause without using the OpenACC ”data copy” or ”present” clause, the variables
in the loop are synchronized between the CPU and GPU in each loop. The method
explicitly specified ”data copy” to mitigate this problem of nesting loop statements
[20]. However, even when ”data copy” or ”present” is specified with OpenACC, vari-
ables may be automatically transferred by a compiler judgement. Compilers basically
process on the safe side by judging from multiple conditions. Conditions are whether
a variable is global or local, where it is initialized, obtained from another function in-
cluding a loop, only referenced, or updated within a loop. Depending on the compiler
specifications, transfers occur even if unnecessary. Therefore, to reduce the number
of transfers that degrade offloading performance but are not intended by OpenACC
instructions, we create a temporary area, initialize variables in the temporary area,
and transfer variables using it for CPU-GPU transfer.

Next, we consider expanding directives to increase the number of applications that
can be applied. Specifically, the directive to specify GPU processing is expanded to
the ”parallel loop” and ”parallel loop vector” directives in addition to the ”kernels”
directive used in previous studies. In the OpenACC standard, ”kernels” are for single
loops and tightly nested loops, ”parallel loop” is for loops that include non-tightly
nested loops, and ”parallel loop vector” is for loops that cannot be parallelized but
vectorized. A tightly nested loop is a simple nested loop. For example, when two
loops that increment i and j are nested, the processing using i and j is carried out
in the lower loop not in the upper loop. In implementations examples such as PGI
compilers, the difference is that ”kernels” determine the parallelism by compilers, and
”parallel” determines the parallelism by programmers. Simple loops were considered
in previous studies, but non-tightly nested loops and loops that cannot be parallelized
but vectorized, so the areas of applicable applications were narrow.

Therefore, in this study, we used ”kernels” for single and tightly nested loops, spec-
ified non-tightly nested loops by ”parallel loop”, and specified loops that cannot be
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Figure 3. CPU-GPU transfer using temporary transfer area

parallelized but vectorized by ”parallel loop vector”. Because ”parallel loop” has more
degrees of freedom than ”kernels”, there is a possibility that calculation results differ-
ences may increase compared to the case of only ”kernels” by adding also ”parallel”.
Thus, it is assumed that the offload program is confirmed by conducting a sample test,
checking the result difference with only CPU and CPU+GPU, and showing the check
results to the user whether to accept or not. Since CPUs and GPUs differ in terms
of hardware, there are differences in the number of significant digits, rounding errors,
and so on. I think that it is necessary to check the differences in calculation results
with only CPU processing even in only ”kernels” cases.

From my previous research [20], this research can make more applications faster by
reducing transfers and increasing the pattern of target for loop statements.

4. Implementation

The implementation of the improved method is as follows. After code analysis, the
method is used to prepare gene individuals that specify GPU processing with ”kernels”,
”parallel loop”, or ”parallel loop vector” for loop statements, specifies a temporary area
to reduce the number of CPU-GPU transfers for each individual, and specifies batch
transfer of variables in multiple files. It then compiles individuals’ codes and measures
application performance in a verification environment. High-performance individuals
are selected, and GA processing is carried out with crossover mutation. Through GA
processing, faster offloading patterns are searched by trial and error. After the final
solution is determined, the method checks the calculation error when using only CPUs
and using CPUs and GPUs.

The purpose of this implementation was to confirm the effectiveness of automatic
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GPU offloading improvement. The application I used was a C/C++ language appli-
cation, and GPU processing used PGI compiler 19.4.

The PGI compiler is an OpenACC compiler for C/C++/Fortran languages. The
bytecode for the GPU can be extracted by specifying parallel processable parts such
as for loop statements by the OpenACC directives of #pragma acc kernels, #pragma
acc parallel loop, and #pragma acc parallel loop vector, and executed on the GPU.
The PGI compiler can also specify whether to transfer data by specifying the #pragma
acc data copyin/copyout/copy or #pragma acc data present directive.

We implemented the method using Perl 5 and Python 2.7. The Perl program controls
GA processing, and the Python program parses source codes.

When a C/C++ application is specified, this implementation analyzes C/C++ code
and detects loop statements and variables used in loop statements. For parsing, the
Python program uses parsing libraries of LLVM/Clang 6 [29] libClang Python binding.
We can also use the similarity-detection tool Deckard to understand the functions used.

We need to exclude loop statements in which GPU processing is impossible. The
Pgcc of the PGI compiler can determine for each statement such as kernels that can be
processed because of tightly nested loop, cannot be parallelized but vectorized or so on.
Therefore, for each for statement that makes such a judgement, the implementation
attempts inserting #pragma acc kernels, #pragma acc parallel loop, and #pragma
acc parallel loop vector directives to determine whether errors occurred during compi-
lation. Three directives of #pragma acc kernels, parallel loop, and parallel loop vector
will result in errors, and for statements that cannot be processed by GPU will be
excluded from the search target for GPU processing in GA. We also can exclude loops
with few loop number by checking gcov or gprof.

If the counted GPU processable loop statements are A, A is the gene length. Gene
value 1 corresponds to a GPU processing directive, and 0 corresponds to no directive.
Source codes with several loop statements are mapped to genes with length A.

A specified number of individual genes is prepared as the initial setting. Initial genes
are created to assign 0 and 1 randomly. The implementation adds GPU processing
directives #pragma acc kernels, #pragma acc parallel loop, and #pragma acc parallel
loop vector to C/C++ loop statements when corresponding gene values are 1. The
reason for not adding parallel directives to tightly nested loop statements is that
kernel directives perform better if they execute the same processing with that of the
PGI compiler. After gene values are set, parts to be processed by the GPU in source
codes are determined.

Next, data-related directives are added; ”data copy”, ”data present”, and a tempo-
rary area are specified based on the reference relation of variables in the loop statement
analyzed by Clang. The following are cases of data transfers are needed. When vari-
ables set and defined on the CPU side and variables referenced on the GPU side
overlap, variable transfer from the CPU to GPU is required. When variables set on
the GPU side are referenced and those set or defined on the CPU side overlap, variable
transfer from the GPU to CPU is required. If there is no repetition, such as processing
the results processed by the GPU and processing it again by the GPU, data trans-
fers may be possible in batch. Specifically, for variables that can be transferred in a
batch before GPU processing and after GPU processing, the implementation specifies
#pragma acc data with the same timing for variables defined in multiple files. Even
if multiple files cannot be batched, variables that can be batched in nesting loops are
batched, as discussed in my previous study [20]. Since many variables are transferred
in a batch, there are variables which are already in GPU when GPU processes each
loop statement. In this case, the implementation instructs that variable transfers are
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not required by specifying #pragma acc data present. In addition, to prevent auto-
matic transfer of compilers, when CPU-GPU transfer is required with #pragma acc
data copy and so on, the implementation creates a temporary area on the GPU side
(#pragma acc declare create), initializes the data, and synchronizes the data via this
temporary area (#pragma acc update).

The C/C++ codes with the added #pragma directives are compiled by the PGI
compiler on a verification machine with a GPU. The implementation deploys compiled
binary files and measures application performance by using sample test tools. Along
with performance measurement, calculation results differences check is also conducted
using PCAST function of the PGI compiler. By specifying options of the pgi compare
or acc compare API, various checks, such as error check according to IEEE 754 spec-
ifications, are possible.

After the performances of all individuals are measured, the implementation sets
a goodness-of-fit value to each gene on the basis of each performance result. If the
calculation result difference is large, the goodness of fit value may be reduced. The
implementation selects individuals based on goodness-of-fit values. For selected indi-
viduals, the implementation processes evolution operation of crossover, mutation, or
copy to create the next-generation of individuals.

For next-generation individuals, directive insertion, compile, performance measure-
ment, setting a goodness-of-fit value, selection, crossover, and mutation are carried
out. After completion of GA processing for the specified number of generations, the
C/C++ code with directives that corresponds to the gene with the highest perfor-
mance is the final solution.

A sample test was conducted for the final solution and calculation result difference is
checked again using PCAST. Performance and calculation result difference are showed
to the user and the user can judge whether to start or not based on performance and
calculation result difference are acceptable or not.

5. Evaluation

5.1. Evaluation method

5.1.1. Evaluated applications

I evaluated five applications, NASA Advanced Supercomputing Fourier Transform
(NAS.FT), discrete Fourier Transform (DFT), Himeno benchmark, Multi-resolution
Adaptive Numerical Environment for Scientific Simulation (MADNESS), and Laplace
2D equation. Many users will also use fast Fourier transform (FFT) and other analyses
in an IoT environment. I also evaluated these applications in my previous studies
[21][20].

In an IoT environment, FT is often necessary for monitoring such as vibration or
sound of vehicle or factory-machine sensors. NAS.FT [30] calculates 3D FFT. When
considering an application that transfers data from a device to a cloud via a network,
it is assumed that the device side executes primary analysis such as FFT processing to
reduce network traffic. I used a sample test of Fourier transformation as a benchmark
for tuning, which sample test is equipped in NAS.FT files. Sample test parameters of
grid size is 256*256*128 and the number of iterations is 6. I also tested a DFT [31]
because FT has many patterns, and it needs to be confirmed whether other patterns
can also be improved.

Himeno benchmark [32] is a benchmark for incompressible fluid analysis, which
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solves the Poisson equation by using the Jacobi iteration method. It is frequently used
for manual GPU acceleration including CUDA; thus, I used it to confirm whether it
can be accelerated with my improved method. Sample test parameters of Large data
set is 512*256*256.

MADNESS is a high-level software environment for solving integral and differential
equations in many dimensions based on multi-resolution analysis and separated rep-
resentations [33]. I used a test tool to calculate 1000*1000 test data as a benchmark
for tuning.

Laplace 2D equation [34] solves the Laplace equation for a 2-dimensional data set.
I used a test tool to calculate 4096*4096 test data as a benchmark for tuning.

5.1.2. Experimental conditions

Since I evaluated the convergence of acceleration using the GA in previous studies
[21][20], I do not illustrate the performance of each application for each generation of
the GA in this paper. However, I measured application performance for all generation
and individual patterns. The highest performance code pattern when the specified
number of generations were attempted was the final solution, and this solution was
evaluated by comparing it with CPU processing of all codes.

Parameters and conditions of the GA are as follows.
Gene length: Number of GPU processable loop statements. 65 for NAS.FT, 10 for

DFT, 13 for Himeno benchmark, 10 for MADNESS, and 5 for Laplace 2D equation.
Number of individuals M (no more than the gene length): 30 for NAS.FT, 10 for

DFT, 10 for Himeno benchmark, 10 for MADNESS, and 5 for Laplace 2D equation.
Number of generations T (no more than the gene length): 20 for NAS.FT, 10 for

DFT, 10 for Himeno benchmark, 10 for MADNESS and 5 for Laplace 2D equation.
Goodness of fit: (Processing time)−1/2. When processing time becomes shorter, the

goodness of fit becomes larger. By setting the power of (-1/2), I prevent the narrow-
ing of the search range due to too high of the goodness of fit of specific individuals
with short processing times. If the performance measurement does not complete in 3
minutes, a timeout is issued, and processing time is set to 1000 seconds to calculate
goodness of fit.

Selection algorithm: Roulette selection and Elite selection. Elite selection means
that one gene with maximum goodness of fit must be reserved for the next generation
without crossover or mutation.

Crossover rate Pc: 0.9
Mutation rate Pm: 0.05

5.1.3. Experiment environment

I used physical machines with NVIDIA Quadro P4000 for evaluations of the improved
method. The CUDA core number of NVIDIA Quadro P4000 was 1792. I used PGI
compiler community edition v19.4 and CUDA toolkit v10.1. Figure 4 shows the exper-
imental environment and specifications. A client note PC specifies C/C++ application
codes, the codes are then tuned with trial and error on a verification machine, and
final codes are deployed in a running environment for users after GA tuning.
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Figure 4. Experimental environment

5.2. Performance results

All five applications improved in performance. Due to the characteristics of the GA,
it does not converge at the same number and same performance every time.

Figure 5 shows an example of performance change in my previous study [20]. It shows
maximum performance change of NAS.FT in each generation with GA-generation
transitions (the vertical axis shows how many times faster GPU offloading was than
using only a CPU). Application performance improved and GPU offloading was about
5 times faster (processing time shortened from 31.3 to 5.8 seconds). Because the same
gene patterns often occur in the GA process, the search process completed within 7
hours.

Based on the previous results, Figure 6 shows the measurement results of how much
application performance improved with the improved method. The figure also shows
how many times the final code was compared to the CPU processing of all codes.

From Figure 5, the performance of NAS.FT only improved 5.4 fold in my previous
studies [20], but improved 10.0 fold with the improved method. The performance of
DFT improved from 5.1 to 23.5 fold, that of Himeno benchmark improved from 4.8
to 15.4 fold, that for MADNESS improved from 12.8 to 16.3 fold, and that of Laplace
2D equation improved from 13.6 to 15.8 fold.

Regarding the Fourier transform, in addition to the previous and this research,
I compared the case of using the manually created CUDA library and the case of
naive use of OpenACC. When using the Fourier Transform library cuFFT [35] which
was created by NVIDIA, the improvement was 730 fold. In the case of naive use
of OpenACC, in the example of simply adding #pragma acc kernels to 58 for loop
statements, the improvement was 2.1 fold. When the appropriate for loop statements
were selected in my method, #pragma directives were inserted to the 27 for loop
statements. The use of cuFFT was faster than my method, but the CUDA library
is manufactured by NVIDIA highly skilled engineers with special algorithm suitable
for NVIDIA GPU. The difference of my method is the automatic speedup with no
technical engineer efforts. By searching for appropriate offload patterns automatically,
this research also improved more than naive use of OpenACC.

In the experiment, there is only one type of test data, but the absolute value of the
performance improvement changes depending on the data type. For example, there
are four types of prepared Himeno benchmark sample test data: Small (128*64*64),
Medium (256*128*128), Large (512*256*256) and Extra Large (1024*512*512). The
result with Large data used in the experiment had 15 fold the performance, but the
Small data had a different degree of improvement, such as staying several times im-
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Figure 5. Reference graph: performance change of NAS.FT with GA generation [20]

Figure 6. Comparison of performance improvement between my previous study and this study

provement. Basically, the larger the data size, the higher the improvement in GPU
offloading. However, even if the absolute value of improvement differs depending on
the data type, the fact that it has been improved compared to only CPU processing
and that this research has been improved from the previous research remains the same.

5.3. Discussion

In my previous study [20], I confirmed a 3 to 5-fold improvement in performance of
large applications such as Darknet, which has more than 100 loop statements. However,
manual speedup with CUDA often resulted in a 10-fold increase in performance. By
reducing as many CPU-GPU transfers as possible, the automatic offloading based on
OpenACC resulted in a 10-fold improvement in performances for large applications.

In my previous study [20] regarding improvable applications, we targeted simple
loops of single and tightly nested loops and carried out GPU parallelization processing
using the ”kernels” directives of OpenACC. However, there was a problem in that
there were many applications that caused errors during GPU compilation. ”Parallel”
directives can be used for non-tightly nested loops, and the ”parallel loop vector”
directives can be used for codes that cannot be parallelized but can be vectorized. Thus,
many applications can be applied to attempt to improve application performance.

Next, we discuss cost performance. GPU boards, such as NVIDIA Quadro, cost
about 2,000 USD. Therefore, hardware with a GPU costs about twice as much as
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hardware with only a CPU. In data centers, hardware, development, and verification
costs of a system, such as a cloud system, are generally about 1/3 the total cost;
electricity and operation/maintenance cost is more than 1/3 and other expenses, such
as service orders, are roughly the other 1/3. In AWS, a GPU instance with one GPU
costs about 650 USD/month, which is the same as hosting a general dedicated server.
Therefore, I think improving performance 10 fold in various type loops of applica-
tions that take much time will have a sufficiently positive cost effect even though the
hardware cost is doubled.

We now discuss the time to start production services. Convergence time of a GA
took several hours in this study as well as in my previous studies. The performance
measurement from compilation of one trial is about 3 minutes, and it takes time to
find a solution according to the number of individuals and generations. However, the
measurement of the same gene patterns as before is omitted, so it takes only several
hours in many cases. When we provide production services, we will provide the first
day for free and try to improve application performance in the verification environment
during the first day, and from the second day we will provide the production service
using a GPU. Therefore, the convergence time is considered acceptable.

To search for the optimum offloading pattern within a shorter time, we can process
each individual performance measurement on multiple machines in parallel.

In these evaluation experiments, I set a high Pc to search for a wide area and
searched for a certain level of solutions relatively fast but parameters may be tuned
more.

The target type of loop statements was also expanded from only ”kernels” but also
”parallel loop” and ”parallel loop vector”; therefore, it was necessary to confirm what
type of application can be automatically accelerated within existing applications.

Of course, there are applications that cannot be accelerated using the GPU. NAS.BT
[30] which calculates Block Tri-diagonal solver has a lot of CPU-GPU data transfer, so
we could not speed it up. Since there was no data transfer with manycore CPUs, the
speed of NAS.BT could be increased to more than 5 times by the similar GA method
using AMD Ryzen 32 core CPU. Therefore, I also study selecting an appropriate
migration destination when there are multiple migration destination candidates such
as GPU, FPGA, manycore CPU, but multiple migration destinations are out of scope
in this paper.

6. Related work

Wuhib et al. studied resource management and effective allocation [36] on the Open-
Stack cloud. My method is a network wide resource management and effective alloca-
tion method including the cloud, but it focuses on appropriate offloading on heteroge-
neous hardware servers. I previously proposed methods [? ] for selecting appropriate
servers from heterogeneous hardware servers, but the improved method in this paper
can offload appropriate loop statements of applications automatically, which is novel.

Some studies focused on offloading to GPUs [37][38][39]. Chen et al. [37] used
metaprogramming and just in time (JIT) compilation for GPU offloading of C++
expression templates, Bertolli et al. [38] and Lee et al. [39] investigated offloading to
GPUs using OpenMP. There have been few studies on automatically converting exist-
ing code to a GPU without manually inserting new directives or a new development
model which the author targets.

In [40][41], GPU offloading areas were searched, and the GA was also used to search
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for them automatically in [41]. However, its target was specific applications that have
many papers to accelerate by GPU, and a huge number of tunings is needed such
as calculations for 20 individuals and 200 generations. My method aims to complete
the GA process in a short time because we want to start production services quickly
for general CPU applications by focusing on parallelizable loop statements for GA
calculations.

I evaluated my improved method by using an OpenACC PGI compiler for C/C++
applications. In addition to the C/C++ language, Java is often used for open source
software (OSS) applications. From Java 8, parallel processing can be specified by a
lambda expression. IBM provides a JIT compiler that offloads processing with lambda
expressions to a GPU [26]. In the case of Java, we can extract an appropriate offloading
area by using this JIT compiler and the GA that checks whether each loop statement
requires parallel processing with a lambda expression.

Generally, CUDA and OpenCL control intra-node parallel processing, and message
passage interface (MPI) controls inter-node or multi-node parallel processing. However,
MPI also requires high technical skills for parallel processing. Thus, MPI concealment
technology has been developed that virtualizes devices of outer nodes as local devices
and enables devices of outer nodes to be controlled by only OpenCL [42]. When we
select multiple nodes for offloading destinations, I plan to use this MPI concealment
technology.

Even if an extraction of an offloading area is appropriate, application performance
may not be high when the resource balance between a CPU and devices is not appro-
priate. For example, a CPU takes 100 seconds and GPU 1 second when one task is
processed, so a CPU slows processing. Shirahata et al. [43] attempted to improve total
application performance by distributing Map tasks with the same execution times of
CPUs and GPUs in MapReduce processing. The study by Kaleem et al. [44] is also
related to task scheduling when a CPU and GPU are integrated chips of the same die.
Referring to their papers, I study how to deploy functions on appropriate locations
and resource amounts to avoid bottlenecks of CPUs or GPUs.

There have been many reports on using GPGPUs to achieve high offloading perfor-
mance for high-arithmetic-intensity applications. Automatic offloading to automatic
parallelization compilers, such as the Intel compiler for multicore CPUs, is common.
However, there has been no study that combines automatic tuning of an appropriate
offloading area by evolutional calculation and a reduction in the number of data trans-
fers between CPUs and GPUs. My method can offload large applications to GPUs.

7. Conclusion

I improved upon my previous automatic GPU offloading method for loop statements
of applications, which is an elemental component of environment adaptive software.
Environment adaptive software adapts applications to environments to effectively use
hardware such as GPUs.

My previous automatic GPU offloading method extracts appropriate loop state-
ments to be offloaded to a GPU by using an evolutionary calculation method and
transfers as many variables in the nested loop statements as possible in the upper
loop. To increase offloading performance and expand the number of applications, I
improved upon this method. To reduce CPU-GPU transfers for higher offloading per-
formance, the range of batch CPU-GPU transfers is extended to multiple file variables.
Also, variables that are already in the GPU after batch transfer are instructed that
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transfer is not necessary using OpenACC #pragma acc data present. Variables are also
transferred via a temporary area. Furthermore, GPU processing of a single loop and
tightly nested loop is instructed using OpenACC #pragma acc kernels. For loops that
can be GPU processed even in non-tightly nested loops, I use OpenACC #pragma acc
parallel. This expands the applicable loop statements.

I evaluated the improved method for several applications and showed that they
perform 10 times better. In the future, I will evaluate it for more applications and
study not only loop statements but also function-block offloading such as Fourier
Transform block.
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