
Title

Author(s)

Citation

Journal title (Repository name etc.), Volume, Issue, Pages(Article number) etc.
・ジャーナル名（刊行物・サイト名）・巻号・ページ（その他論文番号等）：

・DOI (URL）

Publication Date: yyyy/mm/dd

年 月 日 ・出版日：

Publisher

・出版者：

Declaration

This preprint is the of the above.

・本プレプリントは、上記論文の である。

All necessary permissions from the publisher have

・ジャーナル（出版者）から必要な許諾を

been obtained

 得ている

not been obtained
 得ていない

Notes

ORIGINAL PAPER

Study and evaluation of optimum location deployment for

environment adaptive applications

Yoji Yamatoa

aNetwork Service Systems Laboratories, NTT Corporation, 3-9-11 Midori-cho,
Musashino-shi, Tokyo 180-8585, Japan

ARTICLE HISTORY

Compiled May 20, 2022

ABSTRACT
Heterogeneous hardware other than a small-core central processing unit (CPU) such
as a graphics processing unit (GPU), field-programmable gate array (FPGA), or
many-core CPU is increasingly being used. However, to use heterogeneous hard-
ware, programmers must have sufficient technical skills to utilize OpenMP, CUDA,
and OpenCL. On the basis of this, I have proposed environment-adaptive software
that enables automatic conversion, configuration, and high performance operation
of once written code, in accordance with the hardware. However, although it has
been considered to convert the code according to the offload devices, there has been
no study where to place the offloaded applications to satisfy users’ requirements of
price and response time. In this paper, as a new element of environment-adapted soft-
ware, I examine a method to calculate appropriate locations using linear program-
ming method. I confirm that applications can be arranged appropriately through
simulation experiments when some conditions such as application type and users’
requirements are changed.

KEYWORDS
Environment Adaptive Software; Automatic Offloading; Optimum Placement;
Linear Programming; User Requirements

1. Introduction

As Moore’s Law slows down, a central processing unit’s (CPU’s) transistor density
cannot be expected to double every 1.5 years. To compensate for this, more systems
are using heterogeneous hardware, such as graphics processing units (GPUs), field-
programmable gate arrays (FPGAs), and many-core CPUs. For example, Microsoft’s
search engine Bing uses FPGAs [1], and Amazon Web Services (AWS) provides [2]
GPU and FPGA instances using cloud technologies (e.g., [3]-[7]). Systems with Internet
of Things (IoT) devices are also increasing (e.g., [8]-[14]).

However, to properly utilize devices other than small-core CPUs in these systems,
configurations and programs must be made that consider device characteristics, such
as Open Multi-Processing (OpenMP) [15], Open Computing Language (OpenCL) [16],
and Compute Unified Device Architecture (CUDA) [17]. In addition, embedded soft-
ware skills are needed for controlling the details of IoT devices. Therefore, for most
programmers, skill barriers are high.

CONTACT Yoji Yamato Email: yoji.yamato.wa@hco.ntt.co.jp

The expectations for applications using heterogeneous hardware are becoming
higher; however, the skill hurdles are currently high for using them. To surmount these
hurdles, application programmers should only need to write logics to be processed, and
then software should adapt to the environments with heterogeneous hardware to make
such hardware easy to use. Java [18], which appeared in 1995, caused a paradigm shift
in environment adaptation that enables software written once to run on another CPU
machine. However, no consideration was given to the application performance at the
porting destination.

Therefore, I previously proposed environment-adaptive software that effectively runs
once-written applications by automatically executing code conversion and configura-
tions so that GPUs, FPGAs, many-core CPUs, and so on can be appropriately used
in deployment environments. For an elemental technology for environment-adaptive
software, I also proposed a method for automatically offloading loop statements and
function blocks of applications to GPUs or FPGAs [19]-[23].

This paper is for optimizing the applications placement when a normal CPU pro-
gram is offloaded to a device such as a GPU, to meet the user’s cost requirements and
the response time requirements. I propose a method to calculate appropriate locations
using a linear programming method. I demonstrate that applications can be arranged
appropriately through simulation experiments when conditions such as application
type and users’ requirements are changed. This paper extends and improves a short
paper presented at the International Conference ICIAE by adding evaluation results,
discussion of results, and related work.

The rest of this paper is organized as follows. In Section 2, I review technologies on
the market and our previous proposals. In Section 3, I propose an appropriate place-
ment method when the application is automatically converted in accordance with the
use case. In Section 4, I evaluate the proposed method through simulation experiments.
In Section 5, I describe related work, and in Section 6, I conclude the paper.

2. Existing technologies

2.1. Technologies on the market

Java is one example of environment-adaptive software. In Java, using a virtual ex-
ecution environment called Java Virtual Machine, written software can run even on
machines that use different operating systems (OSes) without more compiling (Write
Once, Run Anywhere). However, whether the expected performance could be attained
at the porting destination was not considered, and there was too much effort involved
in performance tuning and debugging at the porting destination (Write Once, Debug
Everywhere).

CUDA is a major development environment for general purpose GPUs (GPGPUs)
(e.g., [24]) that use GPU computational power for more than just graphics processing.
To control heterogeneous hardware uniformly, the OpenCL specification and its soft-
ware development kit (SDK) are widely used (e.g., [25]). CUDA and OpenCL require
not only C language extension but also additional descriptions such as memory copy
between GPU or FPGA devices and CPUs. Because of these programming difficulties,
there are few CUDA and OpenCL programmers.

For easy heterogeneous hardware programming, there are technologies that spec-
ify parallel processing areas by specified directives, and compilers transform these
specified parts into device-oriented codes on the basis of directives. Open accelera-

2

tors (OpenACC) [26] and OpenMP are examples of directive-based specifications, and
the Portland Group Inc. (PGI) compiler [27] and gcc are examples of compilers that
support these directives.

In this way, CUDA, OpenCL, OpenACC, OpenMP, and others support GPU,
FPGA, or many-core CPU offload processing. Although processing on devices can
be done, sufficient application performance is difficult to attain. For example, when
users use an automatic parallelization technology, such as the Intel compiler [28] for
multi core CPUs, possible areas of parallel processing such as ”for” loop statements
are extracted. However, naive parallel execution performances with devices are not
high because of overheads of CPU and device memory data transfer. To achieve high
application performance with devices, CUDA, OpenCL, or so on needs to be tuned
by highly skilled programmers, or an appropriate offloading area needs to be searched
for by using the OpenACC compiler or other technologies. As an effort to automate
trial and error of parallel processing area search, I propose automatic GPU offloading
using an evolutionary computation method.

Regarding applications placement, there is research on optimizing the inserted po-
sition of VN (Virtual Network) for a group of servers on the network as an effective
use of network resources [29]. In [29], the optimum placement of VN is determined
in consideration of communication traffic. However, it is for single-resource of virtual
networks, with the aim of reducing carrier facility costs and overall response time, con-
ditions such as the processing time of individual users’ applications, and requirements
of the cost and response time are not taken into consideration.

2.2. Previous proposals

To adapt software to an environment, I previously proposed environment-adaptive soft-
ware [23], the processing flow of which is shown in Figure 1. The environment-adaptive
software is achieved with an environment-adaptation function, test-case database
(DB), code-pattern DB, facility-resource DB, verification environment, and production
environment.

Step 1: Code analysis
Step 2: Offloadable-part extraction
Step 3: Search for suitable offload parts
Step 4: Resource-amount adjustment
Step 5: Placement-location adjustment
Step 6: Execution-file placement and operation verification
Step 7: In-operation reconfiguration
In Steps 1-7, the processing flow conducts code conversion, resource-amount ad-

justment, placement-location adjustment, and in-operation reconfiguration for envi-
ronment adaptation. However, only some of the steps can be selected. For example, if
we only want to convert code for a GPU, FPGA, or many-core CPU, we only need to
conduct Steps 1-3.

I will summarize this section. Because most offloading to heterogeneous devices is
currently done manually, I proposed the concept of environment-adaptive software and
automatic offloading to heterogeneous devices. However, after automatic conversion,
the adjustment of the appropriate location of the offloaded application has not been
examined (corresponding to Step 5). Therefore, in this paper, I will consider a method
for efficiently arranging automatically converted applications by satisfying the user’s
cost and response time requirements.

3

Figure 1. Processing flow of environment adaptive software

3. Appropriate placement of applications

To embody the concept of environment-adaptive software, I have proposed automatic
GPU and FPGA offloading of program loop statements and function blocks, offloading
from various languages, offloading to mixed devices environment and automatic adjust-
ment of the offloading devices resource amounts. Based on these elemental technology
studies, Section 3.1 outlines automatic GPU offloading technology for loop statements
as an example, and 3.2 discusses consideration points for deploying applications. In
3.3, I formulate a linear programming method for proper placement of applications.

3.1. Automatic GPU offloading of loop statements

There are many cases where a program running on a normal CPU is speeded up by
offloading it to a device such as a GPU or FPGA, but there are few cases where it
is automatically conducted. For automatic GPU offloading of loop statements, I have
proposed several methods [19][23].

First, as a basic problem, the compiler can find the limitation that this loop state-
ment cannot be processed in parallel on the GPU, but it is difficult to find out whether
this loop statement is suitable for parallel processing on the GPU. Loops with a large
number of loops are generally said to be more suitable, but it is difficult to predict
how much performance will be achieved by offloading to the GPU without actually
measuring it. Therefore, it is often the case that the instruction to offload this loop
to the GPU is manually given and the performance measurement is tried. On the
basis of that, [19] proposes automatically finding an appropriate loop statement that
is offloaded to the GPU with a genetic algorithm (GA)[30], which is an evolutionary
computation method. From a general-purpose program for normal CPUs that does
not assume GPU processing, the proposed method first checks the parallelizable loop
statements. Then for the parallelizable loop statements, it sets 1 for GPU execution
and 0 for CPU execution. The value is set and geneticized, and the performance ver-
ification trial is repeated in the verification environment to search for an appropriate
area. By narrowing down to parallel processing loop statements and holding and re-
combining parallel processing patterns that can be accelerated in the form of gene
parts, patterns that can be efficiently accelerated are explored from the huge number
of parallel processing patterns (see, Figure 2).

[23] proposes transferring variables efficiently. Regarding the variables used in the

4

Figure 2. Automatic GPU offload of loop statements

nested loop statement, when the loop statement is offloaded to the GPU, the variables
that do not have any problem even if CPU-GPU transfer is performed at the upper
level are summarized at the upper level. This is because if CPU-GPU transfer is
performed at the lower level of the nest, the transfer is performed at each lower loop,
which is inefficient. I also proposed a method to further reduce CPU-GPU transfers.
Specifically, for not only nesting but also variables defined in multiple files, GPU
processing and CPU processing are not nested, and for variables where CPU processing
and GPU processing are separated, the proposed method specifies to transfer them in
a batch.

Regarding GPU offload of loop statement, automatic offload is possible by optimiza-
tion using the evolutionary computation method and reduction of CPU-GPU transfer.

Using a similar method, I have proposed automatic conversion of loop statements
for FPGA and automatic offloading of function blocks. I also proposed a method of
automatically adjusting the resource amounts of the offload destination device in order
to operate with good cost performance after automatic code conversion.

3.2. Consideration points to place applications

By methods such as 3.1, normal CPU programs can be automatically converted into
offload devices such as GPUs and FPGAs. In this subsection, I will consider placing
the application in an appropriate location after the program conversion.

In method 3.1, multiple offload patterns are repeatedly tried in the verification en-
vironment, and the appropriate offload pattern is selected. Therefore, the converted
application is measured with the processing time, data amount, bandwidth used, calcu-
lation resource amount, and so on in each offload pattern, including the finally selected
offload pattern. Those measured values when each application is offloaded are used in
the proper placement calculation.

Conventionally, applications have been placed in the cloud, and data collected by
IoT devices and the like has been transferred to a cloud server, where the data has
been aggregated and analyzed. However, with the keywords edge computing and fog
computing, there are increasing attempts to speed up the response time of applications
by processing executions in the user environment or network edges that require real-
time response.

In this paper as well, I will consider applications on the premise that they can be
placed not only in the cloud but also at the network edge and user edge. However,
at the network edge and user edge, the server concentration is lower than in the

5

Figure 3. Network topology example

cloud and distributed, so the cost of computing resources is higher than in the cloud.
Generally, the price of hardware such as CPU and GPU is constant regardless of the
location. However, in a data center that operates the cloud, it is possible to monitor
and control the air conditioning of the aggregated servers collectively, so the operating
cost is cheaper.

For example, as a simple topology of the computational node link, Figure 3 can
be considered. Fig. 3 shows the topology used in an example where an IoT device
that collects data in a user environment sends data to the user edge, data is sent
to the cloud via the network edge, and the analysis results are viewed by managers.
Computational nodes are divided into three types: CPU, GPU, and FPGA. A node
equipped with a GPU or FPGA also has a CPU, but it is provided as a GPU instance
or an FPGA instance that includes CPU resources by virtualization technology.

Applications are located on the cloud, network edge, and user edge, and the closer
to the user environment, the lower the response time, but the higher the cost of
computational resources. In this paper, I will deploy the converted application for GPU
and FPGA, but when deploying, the user can make two types of requests. The first is
a cost requirement, which specifies an acceptable price for operating the application,
for example, operating it within 50 USD per month. The second is a response time
request, which specifies an allowable response time when operating an application, for
example, returning a response within 10 seconds.

In the conventional facility design, as considered in [29], for example, the location
where the server accommodating the virtual network is placed is decided by analyzing
at the long-term trend such as the amount of traffic increase.

On the other hand, this paper’s target has two features. The first is that the applica-
tion to be placed is not statically determined but is automatically converted for GPU
and FPGA, and the pattern suitable for the usage pattern is extracted through actual
measurement through GA or other methods, so the application code and performance
can change dynamically. For example, if the same Fourier transform program is used
with large data for user A and small data for user B, the loop statements offloaded
to the GPU might be different and the performance might be 10 times higher than
only CPU processing for A and 5 times higher for B. Second, it is necessary to not
only reduce carrier facility costs and overall response times but also meet individual
user requirements for costs and response times, and application placement policies can

6

change dynamically.
On the basis of these two features, when there is a placement request from the user,

the application placement in this paper is to sequentially place the converted appli-
cations on the server at that time to meet the user’s request. If the cost performance
does not improve even after converting the application, my method places applica-
tions without conversion. For example, a GPU instance costs twice as much as a CPU
instance, and if the converted application does not improve performance more than
twice, it is better to place an application without conversion. Also, if the computing
resources and bandwidth have already been used up to the upper limit, they cannot
be placed on that server.

3.3. Linear programming equations for appropriate application placement

In this subsection, I formulate a linear programming equation for calculating the ap-
propriate location of the application. The parameters are shown in Figure 4.

Here, since the cost of devices and links, the upper limit of calculation resources,
and the upper limit of bandwidth depend on the server and network prepared by the
operator, the parameter values are set in advance by the operator. The amount of
computational resources, bandwidth, data capacity, and processing time used by the
application when offloaded are determined by the measurements in the final selected
offload pattern in the verification environment during automatic conversion. These
values of the application are automatically set by the environment adaptation function.

The objective function and constraints change depending on whether the user re-
quest is a cost request or a response time request. If the request requires the placement
price within a month due to cost requirements, the minimization of the response time
in (1) becomes the objective function, and the cost within (2) becomes one of the
constraints. The constraint conditions that the resource upper limit of the server in
(3) and (4) are not exceeded are also added. If the response time request requires
the application to be placed within a number of seconds, the objective function is to
minimize the cost of (5) corresponding to (2). The response time of (6) corresponding
to (1) is one of the constraints within a number of seconds, and the constraints of (3)
and (4) are also added.

(1) and (6) are equations for calculating the response time Rk of the application k,
the objective function in the case of (1), and the constraint condition in the case of
(6). (2) and (5) are equations for calculating the price Pk for operating the application
k, the constraint condition in the case of (2), and the objective function in the case of
(5). (3) and (4) are constraint conditions for setting the upper limit of the calculated
resource and the communication band, which is calculated including the application
placed by other users and checks the resource upper limit from being exceeded due to
the application placement of the new user.

The linear programming equations (1)-(4) and (3)-(6) can be applied to conditions
of network topology, conversion application type (cost and performance compared to
only CPU processing), user requirements, and existing applications. By deriving a
solution with a linear programming solver such as GLPK (Gnu Linear Programming
Kit) or CPLEX (IBM Decision Optimization), an appropriate application location can
be calculated. By sequentially performing the actual placement for multiple users after
the appropriate placement calculation, multiple applications are placed on the basis
of the requests of each user.

7

Figure 4. Parameters of linear programming equations

Rk =
∑

i∈Device

(Ad
i,k ·B

p
i,k) +

∑
j∈Link

(Al
j,k ·

Ck

Bl
k

) (1)

∑
i∈Device

ai(
Ad

i,k ·Bd
k

Cd
i

) +
∑

j∈Link
bj(

Al
j,k ·Bl

k

C l
j

) ≤ Pk (2)

∑
k∈App

(Ad
i,k ·Bd

k) ≤ Cd
i (3)

∑
k∈App

(Al
j,k ·Bl

k) ≤ C l
j (4)

Pk =
∑

i∈Device

ai(
Ad

i,k ·Bd
k

Cd
i

) +
∑

j∈Link
bj(

Al
j,k ·Bl

k

C l
j

) (5)

∑
i∈Device

(Ad
i,k ·B

p
i,k) +

∑
j∈Link

(Al
j,k ·

Ck

Bl
k

) ≤ Rk (6)

4. Evaluation

On the basis of the equations of the linear programming, I demonstrate that multi-
ple applications are properly arranged by using the solver GLPK by changing some
conditions.

8

4.1. Evaluation method

4.1.1. Evaluated applications

The evaluated applications are the Fourier transform and image processing, which are
expected to be used by many users.

The Fast Fourier Transform (FFT) is used in various situations of monitoring in
IoT such as analysis of vibration frequency. NAS.FT [31] is one of the open source
applications for FFT processing. It calculates the 2,048 * 2,048 size of the built-in
sample test. When considering an application that transfers data from a device to a
network in IoT, it is expected that the device will perform primary analysis such as
FFT processing and send it to reduce network costs.

MRI-Q [32] computes a matrix Q, representing the scanner configuration for cal-
ibration, used in 3D MRI reconstruction algorithms in non-Cartesian space. In an
IoT environment, image processing is often necessary for automatic monitoring from
camera videos, and performance enhancements are requested in many cases. MRI-Q
is a C language application and during application performance measurement, MRI-Q
executes 3D MRI image processing to measure processing time using 64*64*64 size
sample data.

From my previous automatic GPU and FPGA offloading methods [19][20], NAS.FT
can be accelerated by GPU, and MRI-Q can be accelerated by FPGA. Performance
improvements compared with CPU are 5 and 7 times, respectively.

4.1.2. Experimental conditions

The topology for arranging applications is composed of 3 layers as shown in Fig. 3,
with 5 sites in cloud layers, 20 sites in carrier edge layers, 60 sites in user edge layers,
and 300 input nodes. Assuming an application of IoT, IoT data is collected from the
input node at the user edge, and analysis processing is performed at the user edge
or carrier edge or cloud in accordance with the response time requirements of the
application.

All the servers to be analyzed are the assets held by a single operator, and the upper
limit and price of the server and link are decided by the operator. In this evaluation
experiment, the author decided on the following policy. In terms of servers, there are 8
CPU servers, 4 GPU servers with 16GB RAM and 2 FPGA servers in the cloud, 4 CPU
servers, 2 GPU servers with 8GB RAM, and 1 FPGA server in the carrier edge, and
2 CPU servers and 1 GPU server with 4GB RAM in the user edge. Regarding server
cost, for CPU, GPU, FPGA servers, it is assumed that 6,000, 12,000, and 14,400 USD
will be collected in one year as the standard price of the servers in the cloud. When
all resources of one server will be used (when using 16GB RAM for GPU server), the
monthly fee is 500, 1,000, and 1,200 USD. Due to the aggregation effect, the monthly
fee is 1.25 and 1.5 times that of the cloud, assuming that the carrier edge and user
edge will be expensive.

For links, a bandwidth of 100 Mbps is secured between the cloud and the carrier
edge, and a bandwidth of 30 Mbps is secured between the carrier edge and the user
edge. For the link cost, referring to the price of OCN Mobile One Full MVNO for IoT
services (data transfer amount up to 500MB costs 5 USD per month, up to 1GB costs
8 USD per month, etc.), and I set prices that 100Mbps link fee is 80 USD per month,
30Mbps link fee is 50 USD per month.

As the resource used by the application, the value when actually offloaded to GPU
or FPGA is used for the processing time. NAS.FT uses GPU 1GB RAM, usage band

9

2Mbps, transfer data amount 0.2MB, and processing time 5.8 seconds. MRI-Q uses
10 % of the FPGA server (the number of Flip Flop and Look UP Table used is the
FPGA resource usage), the usage band is 1 Mbps, the transfer data amount is 0.15
MB, and the processing time is 2.0 seconds.

The experiment deploys up to 1,000 applications on the basis of user requirements
with set parameter values. The application is an IoT application and is supposed to
analyze the data generated from the input node. Each input node generates placement
requests randomly. Request number to place the applications is 1000 times at a ratio
of NAS.FT:MRI-Q = 3:1.

As a user request, a price condition or a response time condition is selected for each
application when requesting placement. In the case of NAS.FT, the monthly upper
limit of 70, 85 or 100 USD is selected for the price, and the 6, 7 or 10 second upper
limit is selected for the response time. In the case of MRI-Q, the monthly upper limit
of 125 or 200 USD is selected for the price, and the 4 or 8 second upper limit is selected
for the response time. There are three patterns as variations of user requests.

Pattern 1 (P1): 6 types of requests by 1/6 for NAS.FT and 4 types of requests by
1/4 for MRI-Q.

Pattern 2 (P2): It selects the condition with the lowest price as the upper limit
(initially 70 USD for NAS.FT, 125 USD for MRI-Q), and if there is no vacancy, the
next cheapest price condition is selected.

Pattern 3 (P3): It selects the condition that the shortest time is the upper limit
(initially 6 seconds for NAS.FT, 4 seconds for MRI-Q), and if there is no vacancy, the
next shortest time condition is selected.

4.1.3. Experimental tool

The placement is performed by a simulation experiment using the solver GLPK 5.0.
It will be a simulation using tools to simulate a large-scale network layout. In actual
use, when an application offload request comes in, an offload pattern is created by
repeated performance tests using a verification environment, an appropriate amount
of resources is determined on the basis of the performance test results in the verification
environment. Then appropriate placement is determined using GLPK or other solvers
to meet user requests. After production placement, a normal confirmation test and
performance test are automatically performed, the result and price are presented to
the user, and use is started after the user makes a judgment.

4.2. Results

In Fig. 5, the average price and the number of application placements are taken for
three patterns, and in Fig. 6, the average response time and the number of application
placements are taken for three patterns.

It was found that patterns 2 and 3 fills in order from the cloud and from the edge,
respectively. In pattern 1, when various requests come in, they are arranged so as to
satisfy the user requirements.

Regarding Fig. 5, in pattern 2, up to about 400 applications are placed in the cloud
and the average price remains the lowest, but when the cloud is filled, it will gradually
increase. In pattern 3, NAS.FT is placed from the user edge and MRI-Q is placed from
the carrier edge, so the average price is high, and as the edges are filled, applications
are also placed in the cloud, so the average price becomes low. For pattern 1, the
average price is in the middle of patterns 2 and 3 and is arranged in accordance with

10

Figure 5. Average price change with the number of application placements

Figure 6. Average response time change with the number of application placements

the user’s request, so the average price is appropriately reduced compared with pattern
3, which initially fills the edge.

Regarding Fig. 6, in pattern 2, up to about 400 applications are placed in the cloud
and the average response time remains the highest, but when the cloud is filled, it
gradually decreases. In pattern 3, NAS.FT is placed from the user edge and MRI-Q is
placed from the carrier edge, so the average response time is the shortest, but as the
number increases, applications are also placed in the cloud, so the average response
time becomes higher. Regarding pattern 1, the average response time is between pat-
terns 2 and 3 and is arranged in accordance with the user’s request, so the average
response time is appropriately reduced compared with pattern 2, which initially fills
the cloud.

4.3. Discussion

The offload of the loop statement to the GPU in the previous research is a method of
measuring the performance of multiple offload patterns in a verification environment
and making it a high-speed pattern. For example, even Darknet, which is a large-scale
application with more than 100 for statements, automatically offloads to the GPU and
has been tripled in speed. However, not all users can use GPUs and FPGAs abundantly
in the user environment, so it was necessary to be able to use GPUs and FPGAs
resources appropriately in response to user price requests among virtualized resources.
The proposed method automatically converts to GPU and FPGA, and after satisfying
price conditions and response time conditions, resources in appropriate locations can

11

be used, so good cost performance can be achieved.
Regarding the offloading effect with hardware price, GPU or FPGA board price is

about several thousand USD. Therefore, a server with a GPU or FPGA board price is
about two times as much as that for only CPU. In data center systems such as a cloud
systems, initial cost of hardware, development, and verification costs are about a 1/3
of the total cost; electricity power and operation/maintenance costs are more than 1/3;
and other expenses, such as service orders, are less than 1/3. Therefore, I think au-
tomatically converting and placing application appropriately with performances more
than three times higher will have a sufficiently positive effect even though the hardware
price is about two times higher.

My previous research on environment-adaptive software has been based on the
premise of offloading on a server on the cloud, and even if the throughput is im-
proved by offloading to a GPU or FPGA instance on the cloud, response time could
not be improved enough because of transfer time to the cloud. The method proposed
this time is environmental adaptation using resources of the entire network including
not only the cloud but also the network edge and user edge, and applications with
severe response times respond by automatically arranging them on the edge according
to the users’ request. In contrast, for applications with severe cost requirements, a
server on the cloud may be used.

Another paper describes the optimization of the amount of resources. It calculates
the appropriate resource ratio on the basis of the test case execution time in the verifi-
cation environment and automatically sets the resource amount within the user price
condition so that no devices becomes a bottleneck in CPU, GPU, and FPGA. By com-
bining the optimization of the resource amount and the optimization of the placement
of the method proposed this time, the converted application can be provisioned with
better cost performance on the basis of the user’s request.

5. Related work

Wuhib et al. studied resource management and effective allocation [33] on the Open-
Stack cloud. My method is a network wide resource management and effective alloca-
tion method including the cloud, but it focuses on appropriate offloading on hetero-
geneous hardware resources.

Regarding the optimal use of resources existing on the network, there is research to
optimize the inserted position of VN (Virtual Network) for the servers on the network
[29][34]. In these studies, the optimal placement of VN is determined in consideration
of communication traffic. The main target of these studies is facility design, which is
designed by looking at the amount of traffic increase. Specifically, the processing time
and cost for each application, which is different for each user, and various placement
environments such as edges and cloud servers are not taken into consideration. The
purpose of this paper is to convert different applications for each user and arrange them
appropriately in accordance with the user request as an new element of environment-
adaptive software.

Some studies focused on offloading to GPUs [35][36][37]. Chen et al. [35] used
metaprogramming and just-in-time (JIT) compilation for GPU offloading of C++
expression templates. Bertolli et al. [36] and Lee et al. [37] investigated offloading
to GPUs using OpenMP. There have been few studies on automatically converting
existing code into a GPU without manually inserting new directives or a new develop-
ment model, which I target. The method of [38][39] searches for GPU offloading areas

12

and also uses GA to search automatically. However, its target is specific applications
for which many GPU-based methods have been researched to accelerate, and a huge
number of tunings is needed.

There have been many studies on FPGA offloading [40][41][42][43]. Liu et al. [40]
proposed a method of offloading nested loops to an FPGA and found that nested
loops can be offloaded with an additional 20 minutes of manual work. Alias et al.
[41] proposed a method with which an HLS tool configures an FPGA by specifying
C language code, loop tiling, and so on when using Altera HLS C2H. The method
proposed by Sommer et al. [42] can be used to interpret OpenMP code and perform
FPGA offloading. Putnum et al. [43] used a CPU-FPGA hybrid machine to accelerate
a program with a slightly modified standard C language. These methods require man-
ually adding instructions such as which parts to parallelize using OpenMP or other
specifications.

There are many works to speed up by offloading to GPU, FPGA, many-core CPU,
but efforts are needed such as adding instructions of OpenMP manually that specify
parts to parallelize and offload. There are few works to automatically offload the code
of existing applications that users use differently. In addition, only the conversion for
offloading to GPU, FPGA, and many-core CPU in the typical usage of the application
is examined, and the application location optimization for each user is not considered
like this paper.

6. Conclusion

For a new element of my environment-adaptive software, in this paper, to respond
to the user’s cost request and response time request when automatically offloading
to GPU or other devices, I proposed an application placement optimization method.
Environment adaptive software adapts applications to the environments to use het-
erogeneous hardware such as GPUs and FPGAs appropriately.

The proposed method works after the program is converted and the amount of
assigned resources is determined so that it can be processed by an offload device such
as GPU. In the proposed method, first, the data capacity, the amount of calculation
resources, the bandwidth, and the processing time of the application are set from the
data of the performance test performed in the verification environment at the time of
program conversion. Appropriate placement of applications is calculated on the basis of
the linear programming formula from the values set for each converted application and
the values set by operators such as the cost of servers and links set in advance. When
deploying an application, one is a constraint and the other is an objective function
based on a user-specified price or response time request. An appropriate allocation is
calculated by the linear programming solver, and the proposed method presents the
price and so on to the user when the resource is allocated at the calculated location,
and the production use is started after the user consents.

For the applications automatically offloaded to GPU and FPGA, the price condition
and response time condition requested by the user, the number of application place-
ments were changed, then the appropriate placement was calculated by the proposed
method, and the effectiveness of the method was demonstrated. In the future, I will
consider not only calculating the proper placement at the beginning of actual use but
also reconfiguring when there is a more proper placement or converted offload pattern
even during operation.

13

Disclosure statement

The author declares no conflicts of interest associated with this manuscript.

Data availability statement

The author confirms that the data supporting the findings of this work are available
within the manuscript.

Notes on contributors

Yoji Yamato received a B.S. and M.S. in physics, and a Ph.D. in general systems
studies from the University of Tokyo in 2000, 2002, and 2009. He joined NTT in 2002,
where he has been conducting developmental research on a cloud computing platform,
an IoT platform and a technology of environment adaptive software. Currently, he is a
distinguished researcher of NTT Network Service Systems Laboratories. Dr. Yamato
is a senior member of IEEE and IEICE, and a member of IPSJ.

References

[1] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-
maeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati,
J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao and D.
Burger, ”A reconfigurable fabric for accelerating large-scale datacenter services,” Proceed-
ings of the 41th Annual International Symposium on Computer Architecture (ISCA’14),
pp.13-24, June 2014.

[2] AWS EC2 web site, https://aws.amazon.com/ec2/instance-types/
[3] O. Sefraoui, M. Aissaoui and M. Eleuldj, ”OpenStack: toward an open-source solution for

cloud computing,” International Journal of Computer Applications, Vol.55, No.3, 2012.
[4] Y. Yamato, ”Automatic system test technology of virtual machine software patch on

IaaS cloud,” IEEJ Transactions on Electrical and Electronic Engineering, Vol.10, Issue.S1,
pp.165-167, Oct. 2015.

[5] Y. Yamato, ”Optimum Application Deployment Technology for Heterogeneous IaaS
Cloud,” Journal of Information Processing, Vol.25, No.1, pp.56-58, 2017.

[6] Y. Yamato, ”Proposal of Optimum Application Deployment Technology for Heteroge-
neous IaaS Cloud,” 2016 6th International Workshop on Computer Science and Engi-
neering (WCSE 2016), pp.34-37, June 2016.

[7] Y. Yamato, Y. Nishizawa, S. Nagao and K. Sato, ”Fast and Reliable Restoration Method
of Virtual Resources on OpenStack,” IEEE Transactions on Cloud Computing, DOI:
10.1109/TCC.2015.2481392, Sep. 2015.

[8] M. Hermann, T. Pentek and B. Otto, ”Design Principles for Industrie 4.0 Scenarios,”
Rechnische Universitat Dortmund. 2015.

[9] Y. Yamato, ”Proposal of Vital Data Analysis Platform using Wearable Sensor,” 5th
IIAE International Conference on Industrial Application Engineering 2017 (ICIAE2017),
pp.138-143, Mar. 2017.

[10] Y. Yamato, Y. Fukumoto and H. Kumazaki, ”Security Camera Movie and ERP Data
Matching System to Prevent Theft,” IEEE Consumer Communications and Networking
Conference (CCNC 2017), pp.1021-1022, Jan. 2017.

[11] Y. Yamato, Y. Fukumoto and H. Kumazaki, ”Proposal of Shoplifting Prevention Service

14

Using Image Analysis and ERP Check,” IEEJ Transactions on Electrical and Electronic
Engineering, Vol.12, Issue.S1, pp.141-145, June 2017. 　

[12] Y. Yamato, Y. Fukumoto and H. Kumazaki, ”Analyzing Machine Noise for Real Time
Maintenance,” 2016 8th International Conference on Graphic and Image Processing
(ICGIP 2016), Oct. 2016.　

[13] Y. Yamato, ”Experiments of posture estimation on vehicles using wearable acceleration
sensors,” The 3rd IEEE International Conference on Big Data Security on Cloud (Big-
DataSecurity 2017), pp.14-17, May 2017.

[14] P. C. Evans and M. Annunziata, ”Industrial Internet: Pushing the Boundaries of Minds
and Machines,” Technical report of General Electric (GE), Nov. 2012.

[15] T. Sterling, M. Anderson and M. Brodowicz, ”High performance computing : modern
systems and practices,” Cambridge, MA : Morgan Kaufmann, ISBN 9780124202153, 2018.

[16] J. E. Stone, D. Gohara and G. Shi, ”OpenCL: A parallel programming standard for
heterogeneous computing systems,” Computing in science & engineering, Vol.12, No.3,
pp.66-73, 2010.

[17] J. Sanders and E. Kandrot, ”CUDA by example : an introduction to general-purpose
GPU programming,” Addison-Wesley, 2011.

[18] J. Gosling, B. Joy and G. Steele, ”The Java language specification, third edition,”
Addison-Wesley, 2005. ISBN 0-321-24678-0.

[19] Y. Yamato, T. Demizu, H. Noguchi and M. Kataoka, ”Automatic GPU Offload-
ing Technology for Open IoT Environment,” IEEE Internet of Things Journal, DOI:
10.1109/JIOT.2018.2872545, Sep. 2018.

[20] Y. Yamato, ”Automatic Offloading Method of Loop Statements of Software to FPGA,”
International Journal of Parallel, Emergent and Distributed Systems, Taylor and Francis,
DOI: 10.1080/17445760.2021.1916020, Apr. 2021.

[21] Y. Yamato, ”Study and Evaluation of Automatic GPU Offloading Method from Vari-
ous Language Applications,” International Journal of Parallel, Emergent and Distributed
Systems, Taylor and Francis, DOI: 10.1080/17445760.2021.1971666, Sep. 2021.

[22] Y. Yamato, ”Study and Evaluation of Improved Automatic GPU Offloading Method,”
International Journal of Parallel, Emergent and Distributed Systems, Taylor and Francis,
DOI: 10.1080/17445760.2021.1941010, June 2021.

[23] Y. Yamato, ”Study of parallel processing area extraction and data transfer number reduc-
tion for automatic GPU offloading of IoT applications,” Journal of Intelligent Information
Systems, Springer, DOI:10.1007/s10844-019-00575-8, 2019.

[24] J. Fung and M. Steve, ”Computer vision signal processing on graphics processing units,”
2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 5,
pp.93-96, 2004.

[25] Xilinx SDK web site, https://japan.xilinx.com/html docs/xilinx2017 4/sdaccel doc/lyx1504034296578.html
[26] S. Wienke, P. Springer, C. Terboven and D. an Mey, ”OpenACC-first experiences with

real-world applications,” Euro-Par 2012 Parallel Processing, pp.859-870, 2012.
[27] M. Wolfe, ”Implementing the PGI accelerator model,” ACM the 3rd Workshop on

General-Purpose Computation on Graphics Processing Units, pp.43-50, Mar. 2010.
[28] E. Su, X. Tian, M. Girkar, G. Haab, S. Shah and P. Petersen, ”Compiler support of the

workqueuing execution model for Intel SMP architectures,” In Fourth European Work-
shop on OpenMP, Sep. 2002.

[29] C. C. Wang, Y. D. Lin, J. J. Wu, P. C. Lin and R. H. Hwang, ”Toward optimal resource al-
location of virtualized network functions for hierarchical datacenters,” IEEE Transactions
on Network and Service Management, Vol.15, No.4, pp.1532-1544, 2018.

[30] J. H. Holland, ”Genetic algorithms,” Scientific american, Vol.267, No.1, pp.66-73, 1992.
[31] NAS.FT website, https://www.nas.nasa.gov/publications/npb.html
[32] MRI-Q website, http://impact.crhc.illinois.edu/parboil/
[33] F. Wuhib, R. Stadler, and H. Lindgren, ”Dynamic resource allocation with management

objectives - Implementation for an OpenStack cloud,” In Proceedings of Network and
service management, 2012 8th international conference and 2012 workshop on systems

15

virtualiztion management, pp.309-315, Oct. 2012.
[34] K. Kawashima, T. Otoshi, T. Ohshita and M. Murata, ”Dynamic placement of virtual

network functions based on model predictive control”, IEEE/IFIP International Workshop
on Analytics for Network and Service Management, Apr. 2016.

[35] J. Chen, B. Joo, W. Watson III and R. Edwards, ”Automatic offloading C++ expres-
sion templates to CUDA enabled GPUs,” 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum, pp.2359-2368, May 2012.

[36] C. Bertolli, S. F. Antao, G. T. Bercea, A. C. Jacob, A. E. Eichenberger, T. Chen, Z.
Sura, H. Sung, G. Rokos, D. Appelhans and K. O’Brien, ”Integrating GPU support for
OpenMP offloading directives into Clang,” ACM Second Workshop on the LLVM Com-
piler Infrastructure in HPC (LLVM’15), Nov. 2015.

[37] S. Lee, S.J. Min and R. Eigenmann, ”OpenMP to GPGPU: a compiler framework for
automatic translation and optimization,” 14th ACM SIGPLAN symposium on Principles
and practice of parallel programming (PPoPP’09), 2009.

[38] Y. Tomatsu, T. Hiroyasu, M. Yoshimi and M. Miki, ”gPot: Intelligent Compiler for
GPGPU using Combinatorial Optimization Techniques,” The 7th Joint Symposium be-
tween Doshisha University and Chonnam National University, Aug. 2010.

[39] Bobby R. Bruce and J. Petke, ”Towards automatic generation and insertion of OpenACC
directives,” RN, 18.04: 04. 2018.

[40] Cheng Liu, Ho-Cheung Ng and Hayden Kwok-Hay So, ”Automatic nested loop accelera-
tion on fpgas using soft CGRA overlay,” Second International Workshop on FPGAs for
Software Programmers (FSP 2015), 2015.

[41] C. Alias, A. Darte and A. Plesco, ”Optimizing remote accesses for offloaded kernels:
Application to high-level synthesis for FPGA,” 2013 Design, Automation and Test in
Europe (DATE), pp.575-580, Mar. 2013.

[42] L. Sommer, J. Korinth and A. Koch, ”OpenMP device offloading to FPGA accelerators,”
2017 IEEE 28th International Conference on Application-specific Systems, Architectures
and Processors (ASAP 2017), pp.201-205, July 2017.

[43] A. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundararajan and S. Eggers,
”CHiMPS: A C-level compilation flow for hybrid CPU-FPGA architectures,” IEEE 2008
International Conference on Field Programmable Logic and Applications, pp.173-178,
Sep. 2008.

16

	名称未設定

	Title: Study and Evaluation of Optimum Location Deployment for Environment Adaptive Applications
	Citation: International Journal of Parallel, Emergent and Distributed Systems
	Publisher: Taylor and Francis
	Note: "This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Parallel, Emergent and Distributed Systems, on 20th Jun., 2022, available online: https://doi.org/10.1080/17445760.2022.2088749."
	yyyy: 2022
	mm: 06
	dd: 20
	version(English): [Author Accepted Manuscript(AAM)]
	version(Japanese): [(受理済)著者最終稿(AAM)]
	_: ‘I‘ð“à—e1
	__: Off
	Author(s): Yoji Yamato
	DOI: https://doi.org/10.1080/17445760.2022.2088749

