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ABSTRACT

In recent years, more applications have been using not only CPUs with few cores
but also heterogeneous hardware such as FPGAs, GPUs, and multi-core CPUs.
However, to make full use of these, it is necessary to have technical skills for using
hardware such as OpenCL, and this is a high barrier. To solve this problem, we have
developed environment-adaptive software that enables high-performance operation
by automatically converting application code written for normal CPUs by engineers
in accordance with the deployed environment and setting appropriate amounts of
resources. We also have verified its elemental technologies that automatically offload
to FPGA and GPU. Until now, we only considered conversions and settings before
the start of operation. In this paper, we verify that the logic is reconfigured in
accordance with the usage characteristics during operation. Especially for FPGA
logic, the example of reconfiguration during operation is not a commercial cloud, and
this reconfiguration has a large impact, so we work on FPGA logic reconfiguration
this time. We propose a FPGA reconfiguration method during operation and confirm
that the application running on the FPGA is reconfigured into another application
in accordance with the usage characteristics. Through confirmation, performance
improvement and break time are checked, and the method is shown to be effective.

KEYWORDS
Environment Adaptive Software; Automatic Offloading; FPGA; Reconfiguration
during Operation; Cost Performance

1. Introduction

In accordance with the deceleration prediction of Moore’s Law, the use of a multi-core
CPUs (Central Processing Unit), GPU (Graphics Processing Unit), and FPGA (Field
Programmable Gate Array) has been increasing. This type of heterogeneous hardware
has come to be used for normal application operation. Microsoft is making efforts such
as searching with FPGA [1], and Amazon provides FPGA and GPU instances [2] using
cloud technologies ([3]-[6]). In addition, the use of small devices such as IoT devices is
increasing (e.g., [7]-[14]) as heterogeneous hardware.

However, to efficiently use heterogeneous hardware that is not a single-core CPU,
programs need to be created and set in accordance with the hardware specification,
which is a high barrier for most engineers. High knowledge and skill of OpenMP
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(Open Multi-Processing) [15] for multi-core CPU, CUDA (Compute Unified Device
Architecture) [16] for GPU, OpenCL (Open Computing Language) [17] for FPGA,
assembly for IoT devices, or so on are often required.

To increase the use of heterogeneous hardware, we think that a platform is needed
that enables even ordinary engineers without high-level skills or knowledge to make
the best use of them. A platform analyzes software that describes processing with the
same logic as a normal CPU, appropriately converts and sets it in accordance with the
environment of the deployment destination (multi-core CPU, GPU, FPGA, etc.), and
adapts to the environment. In the future, these platforms will be required to perform
the adaptation.

Therefore, we have developed environment-adaptive software that automatically
converts, sets resources, determines the placement and other settings of the program
code once written for normal CPU so that the GPU, FPGA, and multi-core CPU that
exist in the environment of the placement destination can be used, and makes the
applications high performances. At the same time, as elements of environment-adaptive
software, we have developed and evaluated a method of automatically offloading loop
statements and functional blocks of codes to GPUs and FPGAs and a method of
appropriately assigning the amount of processing resources such as GPUs [18]-[22].

However, our environmental adaptation has been based on the premise that adap-
tation processing such as conversion is performed before the start of operation of the
application, and there have been no studies on whether it is reconfigured in accor-
dance with changes in usage characteristics after the start of operation. For example,
before the start of operation, the logic for accelerating SQL processing was configured
with FPGA on the premise that there were many SQL queries, but half a year after
the start of operation, NoSQL queries greatly increased, so the logic for accelerating
NoSQL processing was better to reconfigure the FPGA.

This paper focuses on the reconfiguration of FPGA logic, while reconfiguring soft-
ware in accordance with the usage characteristics during operation. Except for special
applications such as the circuit reconfiguration of an artificial satellite while using
FPGA for accelerating normal applications, there is no example in the commercial
cloud, which reconfigures FPGA logic in accordance with usage characteristics during
application operation. FPGA reconfiguration during application operation is difficult
and effective, we think. First, we offload a normal CPU program to the FPGA and
start operation, analyze the request characteristics, propose changing the FPGA logic
to another program, and examine and evaluate a method for reconfiguration with less
user impact. The effectiveness of the proposed method is evaluated through the FPGA
configuration of the existing application and the reconfiguration during operation. This
paper extends and improves a short paper of the international conference CANDAR
2022 by a proposing, implementing, evaluating, and discussing the methods.

The structure of this paper is as follows. Section 2 outlines the existing technology
and explains our previously proposed environment-adaptive software and the position
of the reconfiguration during operation. In Section 3, we propose a method for recon-
figuring FPGA logic in accordance with the usage characteristics after the start of
operation. Section 4 explains the implementation of the proposed method. In Section
5, we evaluate the proposed FPGA reconfiguration method through offloading of ex-
isting applications and reconfiguration after the start of operation. Section 6 discusses
related research. The paper is summarized in Section 7.



2. Existing technologies

2.1. Technologies in the market

GPGPU (General Purpose GPU), which uses the simple computing power of GPU
for general calculation [23], has become widely used in recent years. NVIDIA provides
CUDA as an environment for that purpose. OpenCL is a specification that handles
heterogeneous hardware such as FPGAs and GPUs in common, not limited to GPUs,
and many vendors have been supporting OpenCL. OpenCL and CUDA write programs
using C language extensions. As an extended description, the transfer of memory
information between the FPGA called the kernel and the CPU called the host is
described, but it is said that more knowledge of hardware is required more for the
original C language.

To make it easy to use heterogeneous hardware such as GPU even if we do not
understand the specifications of OpenCL and CUDA, there is a technology to specify
the part to perform GPU or multi-core CPU with a directive. The compiler creates
binary files for GPUs and multi-core CPUs on the basis of the directives. There are
compilers such as gcc and PGI [24] that interpret and execute specifications such as
OpenMP and OpenACC [25].

By using OpenCL, CUDA, OpenMP, OpenACC, and so on, FPGA, GPU, and multi-
core CPU can be used. However, even if that hardware can be used, the application
performance is not easy to improve. For example, there is an Intel compiler [26], which
automatically distributes processing to multiple cores of the multi-core CPU. At the
time of automation, the Intel compiler finds a loop that can be processed in parallel
in the loop of the program and lets multiple cores perform the processing. However,
in many cases, the performance does not improve even if the loop is simply processed
by multiple cores due to data copying or the like. It is more complicated because the
memory is different for GPU and FPGA instead of multi-core CPU. Thus, to improve
application performance, it may be necessary to tune by making full use of OpenCL
and CUDA or search for appropriate GPU or other processing part using gcc with
trial and error. Therefore, performance improvement using heterogeneous hardware
requires high-level technical skills or trial-and-error searching.

As a GPU offload for loop statements, we have developed an offload using GA
(genetic algorithm) [27], which is an evolutionary computation method, as an effort
to automate the search for appropriate GPU processing parts in all loop statements.
In FPGA, an application compile takes a long time and cannot be measured many
times, so the loop statements that are candidates for offload are narrowed down on
the basis of the arithmetic intensity of loop and the FPGA resource usage rate. For
after narrowing down the candidate loop statements, we have developed a method to
search for an appropriate offload pattern by making the loop statement with OpenCL
and measuring it.

2.2. Environment-adaptive software

Previously, we proposed the overall processing in Fig. 1 as the processing of
environment-adaptive software. The environment-adaptive software is processed by
coordinating the production environment, verification environment, code pattern DB,
facility resource DB, test case DB, and so on as platform functions, centering on the
environment adaptation function provided by the operator.

Step 1: Code analysis
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Figure 1. Overview of environment-adaptive software

Step 2: Offloadable-part extraction

Step 3: Search for suitable offload parts

Step 4: Resource-amount adjustment

Step 5: Placement-location adjustment

Step 6: Execution-file placement and operation verification

Step 7: In-operation reconfiguration

Here, Steps 1-6 perform code conversion, resource-amount adjustment, placement-
location adjustment, and verification, which are required before the application oper-
ation starts. In Step 7, after the application operation starts, the actual production
usage characteristics are analyzed and appropriate reconfiguration is performed. The
targets of the reconfiguration are code conversion, resource-amount adjustment, and
placement-location adjustment as before the operation start.

We summarize the targets. Manual efforts are the mainstream for offloading to het-
erogeneous hardware. We previously proposed the concept of environment-adaptive
software and verified the automatic GPU and FPGA offload method such as loop
statements, but all of them were before the start of operation, and the reconfiguration
after the start of operation, which corresponds to Step 7, has not been considered.
Therefore, in this paper, we will focus on the method of reconfiguring FPGA offload
logic in accordance with the usage characteristics during operation. There are many
targets for reconfiguration, such as GPU, FPGA offload logic, resource amount, place-
ment location, or so on, but FPGA logic is targeted in this paper. This is because there
is no example of reconfiguring FPGA logic in accordance with usage characteristics
even in a commercial cloud, thus it will have a large impact.

3. FPGA reconfiguration during operation

We have developed automatic GPU and FPGA offloading of loop statements and
automatic adjustment of resource amounts and placements so far, to embody the
concept of environment-adaptive software.

On the basis of these elemental technologies, 3.1 reviews the automatic FPGA
offload of the loop statements before the operation starts. In 3.2, the basic policy
for reconfiguration is considered to achieve an appropriate configuration according to
the usage characteristics. In 3.3, we will examine the specific method of the FPGA
reconfiguration during operation.



3.1. Review of the automatic FPGA offload method before operation start

We review the automatic FPGA offload method of the loop statement that was verified
in our previous paper [22].

This method first analyzes the source code to offload and grasps the information of
the loop statement and variables.

Next, the method focuses on the candidate loops for trying the FPGA offload.
The arithmetic intensity can be an indicator of whether the loop statement has an
offload effect to judge. The arithmetic intensity is an index that increases when the
number of calculations is large and decreases when the data size is large, and a high
value may increase the load of CPU processing. Therefore, the arithmetic intensity
of the loop statement is analyzed, and offload loop candidates are narrowed down
by using intensity values. ROSE Framework [28] was used for arithmetic intensity
analysis. In addition, loop statements with many loops also increase the load of CPU
processing. The number of loops is analyzed by the profiler, and offload loop candidates
are narrowed down using loop numbers. Geov was used to analyze the number of loops.

It is a problem that the resources are excessively consumed when they are processed
with FPGA, even for loop statements with high arithmetic intensity and loop num-
bers. Next, we check to calculate the amount of resources when the loop statement
is processed on FPGA. When compiling to FPGA, the loop statement description
is converted from high level languages such as OpenCL to hardware level language
such as Hardware Declaration Language (HDL), and wiring circuits are performed on
the basis of hardware level language. At this time, wiring processing takes a lot of
time, but it does not take much time until HDL level. At the HDL level, the FPGA
usage resource is known, so the amount of resource usage is known in a short time.
By OpenCL language of the offload candidate loop statement, we can calculate the
amount of resources, thus, the arithmetic intensity and the amount of resource usage
are determined. Resource efficiency is the arithmetic intensity/resource-amount us-
age. In this method, a loop statement with high resource efficiency is further narrowed
down as an offload candidate. Here, when a loop statement is converted to OpenCL
language, the program of CPU processing is divided into a kernel (FPGA) and host
(CPU) in accordance with the grammar of OpenCL.

Next, since some high resource efficient loop statements are narrowed down, patterns
to measure performance are created using them. The method creates a certain number
of offload patterns with narrowed loop statements and their combination and compiles
to run them with FPGA. Finally, in the verification environment, the performance of
multiple patterns is measured, and the highest speed pattern is selected as a solution.

In this way, for the automatic FPGA offload of the loop statement, high-speed
patterns are explored through verification environment measurement by focusing on
loop statements with high arithmetic intensity and loop numbers (see Fig. 2). At the
time of the GPU, the combination was performed in most loop statements by GA, and
1000 scales were measured to explore the optimal pattern. In FPGA, it takes more
than 6 hours to compile, so the number of measurements is narrowed down.

3.2. Basic policy for FPGA reconfiguration during operation

By using the method in 3.1, the application specified by the user can automatically
offload the loop statements suitable for FPGA to FPGA.

After the offload to the production environment used by the user, the user can
check the actual performance and price in the production environment and will start
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Figure 2. Automatic FPGA offload of loop statements

using the application or not. However, the performance optimization test case used
in 3.1 (the item to be measured when comparing the performance in multiple offload
patterns) uses the assumed usage data specified by the user before the operation starts.
This may be greatly different from the data that will be used after the operation starts.

Therefore, in 3.2, the usage after the operation starts is different from the initial
assumption, and the performance may be improved by offloading other logic to FPGA.
At this time, reconfiguration is considered to have a low user impact on FPGA logic.
The reconfiguration may be changed to a different loop statement offload in the same
application or may be changed to offload different applications.

There are two types of FPGA reconfiguration: dynamic and static. The former
changes the circuit configuration while running the FPGA, and the time for rewriting
is msec order. The latter stops the FPGA and then changes the circuit configuration,
and the break time is about 1 second. Depending on the degree of user impact of
the break time, we can select a reconfiguration method provided by FPGA vendors.
However, both methods have a break time and require a test for operation confirmation
after reconfiguration. Therefore, we do not think that FPGA should be reconfigured
frequently. To restrict frequent reconfiguration, reconfigurations are only proposed
when the improvement effect is higher than the threshold.

The reconfiguration processing begins with an analysis of the request tendency for
a certain period such as one month. The functions of the proposed method analyze the
request tendency and understand whether there are applications in which the load is
higher than or the same as that of the currently offload application. Next, applications
with high load are executed in the verification environment for the FPGA offload
optimization using data actually used in production instead of the assumed usage
data. Here, it is determined whether the new offload pattern found by verification has
a much higher improvement effect than the current offload pattern or less compared
with the threshold value. If the improvement exceeds the threshold, a reconfiguration is
proposed to the user. If the user accepts, the production environment is reconfigured.
During reconfiguration, the production environment is reconfigured to reduce user
impact as much as possible.



3.3. Method proposal of FPGA reconfiguration during operation

On the basis of the basic policy in 3.2, 3.3 proposes a concrete reconfiguration method.
The reconfiguration method consists of six steps, and each step is explained in detail.
Step 1 is particularly complicated, so we will add a supplementary explanation of it
at the end.

1. For a certain period of time (long term), production request data is analyzed,
and multiple applications with high processing time load are identified, and production
representative data when using the applications are acquired.

1-1. The actual processing time and the number of usage times from each application
usage history for a certain period are calculated.

However, for an application that is ofloaded to FPGA, the processing time is cal-
culated assuming that it is not offloaded. From the test history in the assumed us-
age data before the start of operation, (actual processing time with CPU processing
only)/(actual processing time with FPGA offload) is calculated to set the improve-
ment coefficient. Next, the total processing time is used for comparing to calculate the
sum value of (the improvement coefficient)*(the actual processing time).

1-2. The total actual processing times with all applications are compared.

1-3. On the basis of the total actual processing time with all applications, multiple
applications with high load are identified.

1-4. Request data for a certain period (short term) of the high load applications are
obtained. The distributions of request data are created in accordance with the data
size.

1-5. From the actual request data corresponding to the Mode value of the data size
distribution, one data is selected as the production representative data.

2. Offload patterns are extracted through a verification environment measurement,
which speeds up the test case of production representative data for multiple high load
applications.

2-1. Four statements with high arithmetic intensity are selected for each high load
application.

2-2. Four OpenCL with high arithmetic intensity loops are created and pre-compiled.
Resource usage of each OpenCL are showed, then three OpenCL with high values of
arithmetic intensity /resource usage are selected.

2-3. Three OpenCL is measured with production representative data. Then, an
OpenCL that combines two for statements with top two performances is created, and
the additional performance is measured as well.

2-4. The highest speed offload pattern in four measurements is selected as a final
solution for each high load application.

3. The processing time of the current offload pattern and the extracted multiple new
offload patterns are measured using production representative data, and the perfor-
mance improvement effects are calculated on the basis of the frequency of production
use.

3-1. Calculation with the current offload pattern (actual processing time reduction
in verification environment)*(frequency of production use).

3-2. Calculation with multiple new offload patterns (actual processing time reduc-
tion in verification environment)*(frequency of production use).

4. The reconfiguration proposal is determined by whether the performance improve-
ment effect of the new offload pattern is more than the threshold of the current offload
pattern.

4-1. (3-2)/(3-1) of each high load application is calculated, and calculated value is



checked to see if it is higher than the threshold. If the value is more than the threshold,
the reconfiguration is proposed, and nothing is done if the value is below the threshold.

5. A reconfiguration of FPGA is proposed to the contract user and the user responds
with OK or not OK.

6. A static reconfiguration is conducted by starting new OpenCL in a production
environment.

6-1. New offload pattern compilation.

6-2. Stop operation of the current offload pattern.

6-3. Start the operation of the new offload pattern.

The method selects high load applications in Step 1. For the current FPGA offload
application, the processing time is calculated by applying the improvement coefficient
to calculate where it is not offloaded to compare with other applications that are
processed in CPU only. When choosing representative data, the average data size may
vary significantly from the actual production data, so we use the mode value of the
data size.

4. Implementation

4.1. Tools to use

We explain the implementation to evaluate the effectiveness of the proposed technol-
ogy. To evaluate the effectiveness of the FPGA reconfiguration, the targets are the
applications of the C/C 4+ language, and the FPGA uses Intel PAC D5005 (Intel
Stratix 10 GX FPGA). The machine equipped with FPGA is Dell EMC Poweredge
R740 (CPU: Intel Xeon Bronze 3206R * 2, RAM: 32GB RDIMM * 4).

For FPGA processing, I use Intel Acceleration Stack Version 2.0 (Intel FPGA SDK
for OpenCL, Intel Quartus Prime). The Intel Acceleration Stack can conduct a High
Level Synthesis (HLS), which interprets #pragma for Intel in addition to the stan-
dard OpenCL commands by coordinating two pieces of software. OpenCL code that
describes the kernel program processed with FPGA and the host program processed
by CPU is analyzed by Intel Acceleration Stack, and it outputs information such as the
amount of resources and performs circuit setting work of FPGA, so that the OpenCL
program can be run in FPGA.

For C/C++ language syntax analysis, we use LLVM/Clang 6.0 syntax analysis
library (Python binding of libclang) [29].

In FPGA offloading, arithmetic intensity and the number of loops are used to narrow
down candidates for statements. ROSE Compiler Framework 0.9 [28] is used to analyze
arithmetic intensity, and gcov profiler is used to analyze the number of loops.

The implementation is implemented in Perl 5 and Python 3, and the following
processing is performed. Perl focuses on the performance measurement of the offload
pattern, and Python focuses on other processing such as syntax analysis.

4.2. Each step implementation point

Before the operation starts, the FPGA offload is performed with the same operation
as the previous implementation tool [22]. The newly added reconfiguration method de-
scribed in 3.3 is implemented to operate six steps in the configuration implementation
in order: 1: load analysis, 2: new offload pattern extraction, 3: performance improve-
ment calculation, 4: reconfiguration proposal judgment, 5: reconfiguration approval,



and 6: production reconfiguration.

Among them, the contents determined when implementation, which was not deter-
mined as a method, will be explained while supplementing the points.

First, in the load analysis in Step 1, the request data for a certain period (long
term) is analyzed to determine the applications with the high load. Then, the actual
request data for a certain period (short term) of the high load applications are selected
as the representative data and used when extracting new offload patterns. Here, the
number of high load applications is set by the operator. The operator also sets a certain
period. A long span of one month or more is assumed for a long term and a short span
such as 12 hours is assumed for a short term. In the request data analysis, the actual
processing time and the number of times of use of the application are calculated and
are acquired by the Linux Time command. Since the Time command logs the actual
processing time of the application, the value can be calculated by the number of logs
and summed actual processing time.

Next, in the representative data selection in Step 1, the actual request data for a
certain period (short term) of high load applications is arranged for each fixed size
to create a frequency distribution. In addition, the class number is determined by the
Sturges formula. The Sturges formula is appropriate to set the number of classes to
1+logon when the application is used n times. After determining the number of classes
and selecting the Mode class, one representative data needs to be selected from Mode
class. When selecting representative data, the implementation selects the data whose
data size is closest to the central value of the class as the representative data.

In Step 2, using the selected production representative data, FPGA offload is per-
formed for the application with the high load by the same processing as before the
start of operation. It is different from before the start of operation in that the test
case used for performance measurement uses production representative data instead
of assumed usage data.

In Step 3, the improvement effect needs to be seen when the production environment
is reconfigured to the new offload pattern. Since it has not been proposed to the user
for reconfiguration, it has to be verified in the verification environment server, but the
improvement of each process is measured using the representative data of production
use, and the degree of improvement of the whole is calculated by using the frequency
of production use. By calculating, we will compare the effect when the production
environment is reconfigured.

In Step 4, the proposal for reconfiguration is judged. No proposals are made if the
improvement is below the threshold. Frequent proposals are inconvenient for the user,
so by setting the threshold for improving the effect to a value sufficiently larger than
one time, it is possible to suppress the frequent occurrence of proposals and leave a
case of truly effective reconfiguration. The threshold can be set variably, but this time
2.0 is set.

In Step 5, at the time of the reconfiguration proposal, the price and the improve-
ment effect in the verification environment after the reconfiguration are given, and
the reconfiguration is proposed to the contract user. From this, the contract user can
judge whether it is better to reconfigure or not.

In Step 6, when the reconfiguration is performed, the circuits are rewritten using
OpenCL static reconfiguration, and an about one-second break time occurs. If we want
to reduce the break time to the order of msec, we can use the dynamic reconfiguration
such as the dynamic partial reconfiguration function of Intel FPGA.



5. Evaluation

5.1. Evaluation conditions

5.1.1. Evaluated applications

The evaluated applications are mainly signal processing and image processing, which
are expected to be used by many users in FPGAs.

The tdFIR (time-domain Finite-Impulse Response filter) for signal processing is a
type of filter that cuts off the output when an impulse function is input to the system
in a finite time. There are various implementations, but the C code of [30] is used.
When considering an application that transfers signal data from a device to a network
in IoT or other situations, it is assumed that the data will be sent to the cloud after
processing signals such as filters to reduce network costs. Therefore, we think that the
automatic speed-up of signal processing in FPGA has a wide range of applications.

MRI-Q [31] is an MRI image processing that calculates the Q-matric that repre-
sents the scanner settings for calibration. MRI-Q is used in a 3D MRI reconstruction
algorithm in non-Cartesian space. In IoT or other situations, image processing is of-
ten required for automatic monitoring of camera images, and performance of image
processing throughput needs to be enhanced. In the performance measurement at the
time of offload pattern extraction, MRI-Q performs 3D MRI image processing and
depends on the data size, but in the assumed usage, the processing time is measured
using 64*64*64 size data.

In addition, the Himeno benchmark [32] for uncompressed fluid analysis, Symm
(Symmentry matrix manipulation) [33] for symmetric matrix calculation, and DFT
(Discrete Fourier Transform) [34] for discrete Fourier transform calculation are run on
the same server and execution requests are received.

5.1.2. Ewvaluation methods

We evaluated the proposed method. Before the start of operation, the user specifies
the offload of tdFIR and automatically offloads it to FPGA. In the production envi-
ronment, only tdFIR is offloaded to FPGA, and MRI-Q, Himeno Benchmark, Symm,
and DFT are run by CPU only processing. A request load is applied to the production
environment server for a certain period, the requests are analyzed, a reconfiguration
to a new offload pattern with a high-performance improvement effect is proposed, and
the reconfiguration is performed after user approval.

The conditions for FPGA offload are as follows.

Offload target: Number of loop statements. tdFIR 6, MRI-Q 16, Himeno 13, Symm
9, DFT 10.

Narrow down of Arithmetic Intensity: Narrowing down to the top four loop state-
ments in arithmetic intensity analysis

Narrow down of resource efficiency: Narrow down to the top three loop statements
in resource efficiency analysis

Number of measured offload patterns: 4 (The first measurement measures three
offload patterns with high resource efficiency, and the second measurement measures
the combination pattern of the two loop statement offloads that are high performance
in the first measurement.)

The operational conditions for FPGA reconfiguration are as follows.

Request frequency: tdFIR 200 req/h, MRI-Q 10 req/h, Himeno 3 req/h, Symm 2
req/h, DFT 1 req/h requests are applied for 3 hours.

10
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Figure 3. Evaluation environments

Types of data: For tdFIR and MRI-Q, three types of data are prepared. In tdFIR,
162 KB, 2.06 MB and 33.0 MB of sample data are used at a ratio of 75:120:5. In
MRI-Q, 32*32*32 sample data, 64*64*64 sample data and double size of 64*64*64
sample data in which 64*64*64 data is copied and added are used at a ratio of 3:5:2.
Himeno, Symm, and DFT only request the equipped sample data.

Long term during load analysis: 3 hours

Short term when selecting representative data: 1 hour

Number of high load applications: 2

Threshold of performance improvement effect: 2.0

During the reconfiguration, the performance improvement effect and the processing
time of each step associated with the reconfiguration are acquired.

5.1.3. Ewaluation environments

Intel FPGA PAC D5005 (Intel Stratix 10 GX FPGA, Logic Element 2,800,000) is used
as the evaluation FPGA. The server equipped with Intel FPGA PAC D5005 is DELL
EMC PowerEdge R740 (CPU: Intel Xeon Bronze 3206R * 2, RAM: 32GB RDIMM *
4). Intel Acceleration Stack Version 2.0 is used for FPGA control. By dividing the C
language program into a kernel program and a host program in accordance with the
OpenCL syntax, FPGA offload processing is performed by OpenCL, and reconfigura-
tion to another OpenCL program is also processed by Intel Acceleration Stack.

Figure 3 shows the evaluation environment and specifications. Here, the notebook
PC specifies the application code to be offloaded, extracts the offload pattern through
performance measurement in the verification environment, and then deploys it to the
production environment. Execution requests are made to the production environment
applications from the notebook PC periodically. The production environment requests
are analyzed, new offload patterns are extracted using the verification environment,
and after user confirmation, the production environment is reconfigured into the new
offload pattern.

5.2. Results

Figure 4 shows the degree of improvement in the processing time of the offload appli-
cation before and after the reconfiguration and the total processing time (corrected
for the improvement coefficient) for a certain period. First, tdFIR was offloaded before
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Improvement of |[Summation of

Application . . N K
processing time |processing time
Before _ |taFIR 774 sec/h 644 sec
reconfiguratoin
After MRI-Q 238 sec/h 746 sec

reconfiguratoin

Figure 4. Comparison of performance improvement through reconfiguration of the proposed method

the reconfiguration, the degree of improvement in the assumed data before the start of
operation was 4.12, and the load of 200 req/h was applied after the start of operation.
The total corrected processing time is 644 seconds, which was calculated from the
total actual processing time of the request * 4.12, and the total number of uses is 600.
Next, MRI-Q has a load of 10 req/h after the start of operation. The total corrected
processing time is 746 seconds of the total actual processing time of the request, and
the total number of uses is 30. These two are the applications with the high load. td-
FIR and MRI-Q search for new offload patterns using production representative data.
The processing time for one time in the new offload pattern is reduced from 0.511 to
0.124 seconds for tdFIR and from 26.0 to 2.21 seconds for MRI-Q. By multiplying the
number of production uses, the processing time is reduced. The degree of performance
improvement is 77.4 seconds/hour for tdFIR and 238 seconds/hour for MRI-Q.

From Fig. 4, the change from tdFIR offload to MRI-Q offload increases the perfor-
mance improvement by 3.1 times and exceeds 2.0, so reconfiguration is proposed to
the user.

The request analysis is small because only three hours of data is analyzed at this
time, but it will take longer in proportion to the size. This time, it takes about only few
seconds for request analysis and for production representative data selection, about one
day for improvement effect calculation, and 2.7 seconds for reconfiguration. Regarding
the trial of the new offload patterns searches during operation, and the time to compile
the new offload pattern in the production environment, since one FPGA compilation
takes six hours or more, the number of measurements is four, which takes more than a
day for one application. Most processing such as analysis, including the trial of the new
offload patterns searches, is performed in the background during application operation
in the production environment, so there is no user impact. The only thing that can
be confirmed is that the break time of the application is necessary for production
reconfiguration. However, the static reconfiguration of OpenCL takes about only two
seconds, and there is almost no effect. If a shorter break time is required, it is possible
to use the dynamic reconfiguration function of FPGA vendors.

We evaluated the FPGA reconfiguration in accordance with the usage characteristics
during operation by changing from tdFIR offload to MRI-Q offload during operation.
Through the reconfiguration, the degree of performance improvement increased above
the threshold value, and the break time was sufficiently short.

5.3. Discusstion

In our previous FPGA offload of loop statement, the performance is measured in
the verification environment and the high-speed pattern is automatically searched
for. By using Intel Arria 10 FPGA, tdFIR and MRI-Q can achieve several times
higher performance automatically. Since FPGAs require programs that accord with
the hardware characteristics and manual design is the mainstream, automatic offload
can be said to be a major advance. This time, it can be said that resource efficiency of
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FPGA is further advanced because the amount of resources is limited by reconfiguring
to more appropriate logic in accordance with the usage characteristics during operation
as well as before the start of operation.

The cost is considered. FPGA boards such as Intel Stratix cost about 3,000 USD
each. Therefore, looking only at the hardware price, the price of a machine equipped
with FPGA is usually twice that of a machine with only a CPU. However, in general,
the cost of a data center is less than 1/3 of the cost of system development such as
hardware and cloud, the operation cost of electricity cost and maintenance/operation
system is more than 1/3, and the service order and other costs are about 1/3. There-
fore, even if the hardware price itself is two times higher, this technology can improve
the performance of loop statement processing, which used to take time by CPU pro-
cessing, by two times or more and reconfigure it into appropriate logic. We think the
cost effectiveness is good.

The time required for reconfiguration is considered. The analysis takes almost no
time, but the time to search for new offload patterns varies greatly depending on the
number of performance measurements. This is because it takes a long time to compile
with FPGA, and the current situation is that it takes more than six hours * total
number of measurements. However, this measurement time is the time required in the
verification environment and is irrelevant to users in the production environment, so
the effect can be said to be small. The only thing that affects the user is the break time
when reconfiguring the production environment, but since it is about two seconds, the
effect is still small. In summary, the verification time of one day or more and the break
time of about two seconds are considered to be acceptable considering that the cost
effectiveness will be improved by the reconfiguration.

The FPGA offload pattern search time can be shortened by preparing multiple
FPGA servers and performing measurements in parallel. In addition, although the
offload candidate loop statements are narrowed down on the basis of the arithmetic
intensity and resource usage, it is also effective to reduce the number of narrowed-down
measurements by the number of loops. The FPGA offload can be further speeded up by
changing the logic to consider the algorithm of the entire function, rather than simply
offloading the loop statement. For example, tdFIR loop statement offload improves
performance by several times with Intel FPGA, but when the entire tdFIR function is
offloaded to logic with OpenCL implemented with optimized algorithms, Intel Arria
10 FPGA improves performance by 21 times. Therefore, we will consider using such a
function block offload together with the loop statement.

This time, we focused on the reconfiguration of FPGA logic in the reconfiguration
during operation. Before starting operation, environment-adaptive software has veri-
fied automatic conversion to multi-core CPU, GPU, FPGA, optimization of processing
resource amount, and optimization of placement location. Therefore, during operation
reconfiguration, other optimizations such as GPU logic and the amount of resources
can be possible, not just FPGA logic. We will also consider these various types of
reconfigurations and aim to improve cost performance by reconfiguration during op-
eration as a whole.

6. Related work
There is a method to improve resource efficiency on the cloud using OpenStack [35].

Our proposed method can also be said to be a resource efficiency technology by recon-
figuration including cloud, but our method especially targets FPGA reconfiguration
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in accordance with the usage characteristics during operation. This can be said to be
a new attempt to reconfigure offload logic automatically.

As for the development environment of OpenCL that controls FPGA, Altera before
it was acquired by Intel was released in the same way as Xilinx. For example, the
Altera SDK for OpenCL [36] consists of the OpenCL C Compiler and the OpenCL
Runtime Library, which describes the processing in OpenCL and enables FPGA pro-
cessing. However, it is difficult to automatically offload certain logic to the FPGA
to improve performances. On the other hand, many well-known processing patterns
such as FFT (Fast Fourier Transform) may be implemented in OpenCL. Therefore,
to utilize them, it is considered to prepare a replacement OpenCL in the DB for the
well-known pattern, and when using the well-known processing, the method is studied
that replaces the processing with the replacement OpenCL and offloads it.

There is a lot of research on FPGA offload [37][38][39][40]. Liu et al. [37] suggested
a method for offloading nested loops into the FPGA and showed that the nested loops
can be manually offloaded for an additional 20 minutes. Alias et al. [38] proposed a
method for HLS tools to specify C language code, loop tie, and so on to configure
FPGA when using Altera HLSC2H. The method proposed by Sommer et al. [39] can
be used to interpret OpenMP code and perform FPGA offload. Putnum et al. [40]
used a CPU-FPGA hybrid machine to accelerate the program in a slightly modified
standard C language. These methods require manual addition of instructions such
as parts to be parallelized using OpenMP or other specifications. Therefore, there is
almost no research on automatically offloading or reconfiguring existing code to FPGA
as in this paper.

SYCL [41] is a single-source programming model on heterogeneous hardware. In
OpenCL, the host code and kernel code are written separately, but in SYCL, they can
be written in a single source. DPC++ [42] is Intel’s SYCL compiler. Both OpenCL
and SYCL require new programs to use heterogeneous hardware. SYCL improves over
OpenCL because it targets a single code that runs on multiple pieces of hardware,
such as CPU and GPU or FPGA. However, the new SYCL single code needs to be
written by the programmer. Therefore, the target is different from that in this paper,
which does not require the manual creation of new code.

OpenCL basically controls kernel processing within a node, but when processing
with an FPGA of multiple nodes, it is normal to perform processing between nodes
using MPI (Message Passing Interface). However, MPI requires a high level of knowl-
edge like OpenCL. Therefore, the MPI description itself does not need to be described,
and MPI processing technology that uses the device of a different node by showing the
device as a local node has come out [43]. When processing with FPGAs of multiple
nodes, we are also considering the use of these MPI processing technologies.

As mentioned above, there are many works to speed up by offloading to FPGA,
but the mainstream approach is to manually add instructions such as which part to
parallelize and offload in accordance with it like OpenMP. There are few methods to
automatically ofload existing code. In addition, others are only considering conversion
for offloading to FPGA before the start of operation. There is no study to improve cost
performance by reconfiguring the FPGA logic to a new FPGA logic during operation
in accordance with the usage characteristics as targeted in this paper.
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7. Conclusion

We previously proposed environment-adaptive software for automatically adapting
software to the deployment destination environment and appropriately using GPU,
FPGA, and so on to operate applications with high performance. In this paper, as an
element of it, we have proposed an FPGA reconfiguration method that reconfigures the
appropriate FPGA logic during operation in accordance with the usage characteristics
after the application operation starts.

Before starting operation, the application loop statement is automatically offloaded
to the FPGA. In the proposed method, the applications with large CPU processing
times are analyzed from the actual request data at regular intervals, and the corre-
sponding representative test cases are gathered. Next, the offload patterns that speed
up representative test cases are extracted through trial measurement in the verifica-
tion environment for large load applications. This is almost the same as offload before
the start of operation. Next, the processing time of the current offload pattern and
the extracted new offload pattern are measured, and the processing time improve-
ment is calculated on the basis of the frequency of production use. Here, if the new
offload pattern has an effect greater than the threshold of the current offload pattern,
our method proposes to the users to carry out reconfiguration. Once user consent is
obtained, our method reconfigures FPGA logic using OpenCL reconfiguration in a
production environment. The application was automatically offloaded to the FPGA,
and the FPFA logic was reconfigured during operation to another application in the
experiment. The reduction in processing time was improved by reconfiguration, and
reconfiguration was performed with a short interruption time of 2.7 seconds. Thus,
the proposed method was shown to be effective.

In the future, we will further expand the scope of reconfiguration during operation,
and consider reconfiguring not only FPGA logic but also GPU logic and multi-core
CPU logic, as well as other settings such as adjusting resource amount and placement.
With appropriate reconfiguration during operation, we will evaluate cost performance
improvement.
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