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Abstract 16 

Human behavioural changes are poorly understood, and this limitation has been a serious obstacle to 17 

epidemic forecasting. It is generally understood that people change their respective behaviours to reduce 18 

the risk of infection in response to the status of an epidemic or government interventions. We must first 19 

identify the factors that lead to such decision-making to predict these changes. However, due to an absence 20 

of a method to observe decision-making for future behaviour, understanding the behavioural responses to 21 

disease is limited. Here, we show that accommodation reservation data could reveal the decision-making 22 

process that underpins behavioural changes, travel avoidance, for reducing the risk of COVID-19 23 

infections. We found that the motivation to avoid travel with respect to only short-term future behaviours 24 

dynamically varied and was associated with the outbreak status and/or the interventions of the government. 25 

Our developed method can quantitatively measure and predict a large-scale population’s behaviour to 26 

determine the future risk of COVID-19 infections. These findings enable us to better understand 27 

behavioural changes in response to disease spread, and thus, contribute to the development of reliable long-28 

term forecasting of disease spread. 29 
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Introduction 31 

The emergence of COVID-19 has reaffirmed the need to control the spread of infectious diseases through 32 

efficient monitoring and forecasting. However, the role of epidemic forecasting during the spread of 33 

COVID-19 was mostly limited. In fact, most reliable forecasting was focused on predicting new cases over 34 

subsequent weeks, whereas long-term forecasts, especially to predict peaks and rebounds in incidences, 35 

were deemed challenging1–3. There are many reasons why long-term forecasting is said to be difficult. For 36 

instance, the ecology and evolution of emerging infectious diseases remains largely unknown; how the 37 

immune system of a host responds to a new disease is poorly understood and as is the host’s change in 38 

behaviours2,4,5. 39 

In this article, we are mostly concerned about people’s behavioural responses to epidemic events 40 

preventing disease forecasting2,6–8. Changes in behaviours have long been observed during epidemics. 41 

These include precautionary measures that were adopted during the severe acute respiratory syndrome 42 

pandemic9; reduced public transport use, rescheduling travel plans, or cancellation of commercial flights10; 43 

mask-wearing and more frequent hand sanitising11 during H1N1 pandemic. Additionally, avoidance of 44 

unsafe traditional burials during Ebola outbreaks12; and the numerous measures, such as reduced human 45 

mobility13, that were taken during the current COVID-19 outbreak14. Such behavioural responses are 46 

known to help suppress the spread of an infectious disease7,8,15, which in turn may also cause additional 47 

behavioural responses. In such a case, the effect of the behavioural response on the spread of disease 48 

becomes more crucial and complex, which makes it necessary to predict future behaviours for the long-49 

term forecasting of infectious outbreaks. 50 

To predict human behaviours, we must first understand the decision-making involved in behavioural 51 

responses. The kinds of observations, however, are difficult because we can usually observe only realised 52 

behaviours because of such decision-making. For example, large-scale human mobility data from mobile 53 

phones16,17, smart cards18, and/or social network services19 have been used to estimate the spatial and 54 

temporal spread of infectious diseases17,20–25 or evaluate the effect of government interventions26–30. 55 

However, human behaviours may be decided based on both the present situation as well as the past because 56 

we often need planning, appointment, or reservation in advance of the behaviour. Thus, human mobility 57 

data can show only realised behaviours, but not the timing of the decision for the observed behavioural 58 

changes. This makes it unsatisfactory to identify factors that influence decision-making from only mobility 59 

data. 60 

We need a fundamentally different approach to observe the decision-making of human behaviours in 61 

response to COVID-19. One possibility is to use accommodation reservation data. It is generally believed 62 

that travel can increase the risk of infectious spread31,32. In fact, travel restrictions were one of the earliest 63 

government-mandated responses to COVID-19 in Japan33. Thus, accommodation reservations form an 64 
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interesting dataset that reflect behavioural changes in response to government interventions or outbreak 65 

status11,31. Importantly, making new reservations or cancelling existing ones are decision-making events for 66 

future behaviours and are observed as a fall in new reservations or an incremental increase in cancellations. 67 

In other words, accommodation reservation data allow us to quantitatively evaluate the decision-making of 68 

a large-scale population for future risk reduction behaviours. 69 

Materials and Methods 70 

Data 71 

The accommodation reservation dataset excluding personally identifiable information was obtained from 72 

jalan.net (https://www.jalan.net/), one of the largest online travel agents in Japan34. All reservation records 73 

for accommodations located in four prefectures, Miyagi, Aichi, Osaka, and Fukuoka, from 1 January 2016 74 

to 31 December 2021 were enrolled in the analysis. To avoid bias from spatial heterogeneity, we chose the 75 

prefectures showing the largest population in each region of Japan in 202035 (see Fig. s2). The number of 76 

accommodations located in the four prefectures is 2,065 (318 for Miyagi, 543 for Aichi, 629 for Osaka, and 77 

575 for Fukuoka, counted on the jalan.net website on 8 February 2022), which comprised 47.8% of the 78 

accommodations reported by Japan Tourism Agency (2021)36 (46.2% for Miyagi, 55.9% for Aichi, 42.2% 79 

for Osaka, and 47.3% for Fukuoka). Each reservation record contained the reserved date, accommodation 80 

date, and cancelled date if the reservation was cancelled. Since reservation records for a stay more than one 81 

year ahead are rare (less than 0.0015% of all records), only reservation records for a stay within 365 days 82 

were used for the analyses. The number of newly reported COVID-19 cases in Japan was obtained from the 83 

open dataset provided by the Ministry of Health, Labour and Welfare of Japan37. The date at which the 84 

government declared a state of emergency was obtained from Cabinet Secretariats38. 85 

Model 86 

Depending on the spread of the epidemic or government’s intervention, the degree of motivation for 87 

avoiding travel can be varied. We defined such motivations for a certain future period at each period as the 88 

‘travel avoidance level’. The higher the travel avoidance level, the higher the probability of postponing 89 

accommodation reservations or cancelling the existing reservations. We assumed that these probabilities 90 

owing to travel avoidance levels are represented by sigmoid functions, that is, 91 

 
1

1+exp(𝑎(logit(𝜆𝑡,𝑥)−𝑏) )
  (1a) 

and 92 

 
1

1+exp(𝑐(logit(𝜆𝑡,𝑥)−𝑑) )
, (1b) 

https://www.jalan.net/
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where 𝜆𝑡,𝑥  is the travel avoidance level at time 𝑡 for the travel x days ahead, and 𝑎, 𝑏 or 𝑐, 𝑑 are coefficients 93 

determining the slope and the threshold of the sigmoid functions. 𝑙𝑜𝑔𝑖𝑡 is the logit function, that is, 94 

 logit(𝜆) = ln (
𝜆

1−𝜆
). (2) 

The expected number of the accommodation reservations for the stay on 𝑥 days ahead at time 𝑡 is 95 

 𝑅𝑡,𝑥 = �̅�𝑥 (1 −
1

1+exp(𝑎(logit(𝜆𝑡,𝑥)−𝑏) )
), (3a) 

where �̅�𝑥 is the baseline occurrence frequency of the reservation event for the stay on 𝑥 days ahead. When 96 

𝜆𝑡,𝑥  = 0, the expected number of accommodation reservations becomes equal to the baseline �̅�𝑥, and when 97 

𝜆𝑡,𝑥  = 1, no new reservation occurs. Similarly, the cancellation probability of the existing reservations per 98 

day is represented as 99 

 𝐶𝑡,𝑥,𝑦 = 𝐶�̅�,𝑦 + (1 − 𝐶�̅�,𝑦)
1

1+exp(𝑐(logit(𝜆𝑡,𝑥)−𝑑) )
, (3b) 

where 𝐶�̅�,𝑦 is the baseline cancellation probability of the reservation, which is reserved on 𝑦 days ahead of 100 

the stay and cancelled on 𝑥 days ahead of the stay. When 𝜆𝑡,𝑥  = 0, the expected number of the cancellation 101 

probability becomes equal to the baseline 𝐶�̅�,𝑦, and when 𝜆𝑡,𝑥  = 1, all existing reservations are cancelled. 102 

To reduce the number of parameters for the estimation, we rewrite Eq.(3a) and (3b) by the parameter 103 

transformation as follows: 104 

 𝑅𝑡,𝑥 = �̅�𝑥 (1 −
1

1+exp(logit(𝜆𝑡,𝑥
′ ) )

)  (4a) 

and 105 

 𝐶𝑡,𝑥,𝑦 = 𝐶�̅�,𝑦 + (1 − 𝐶�̅�,𝑦)
1

1+exp(𝑐′(logit(𝜆𝑡,𝑥
′ )−𝑑′) )

, (4b) 

where 106 

 
𝜆𝑡,𝑥

′ =
exp[𝑎(ln(

𝜆𝑡,𝑥
1−𝜆𝑡,𝑥

)−𝑏)]

1+exp[𝑎(ln(
𝜆𝑡,𝑥

1−𝜆𝑡,𝑥
)−𝑏)]

, (5a) 

 𝑐′ =
𝑐

𝑎
, and (5b) 

 𝑑′ = 𝑎(𝑏 − 𝑑). (5c) 

This parameter transformation does not qualitatively change the influence of the levels of travel avoidance. 107 
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Estimation 108 

�̅�𝑥 and 𝐶�̅�,𝑦 are derived by calculating the mean weekly reservation frequency and cancellation probability 109 

before the emergence of COVID-19 from the accommodation reservation data between 1 January 2016 and 110 

31 December 2019. We assumed that the observed new reservation numbers at each week are following the 111 

Poisson distribution whose expected occurrence number is Eq. (4a), and the observed cancellation numbers 112 

are following the binomial distribution whose occurrence probability is Eq. (4b) and trial number is the 113 

number of ‘survived’ (not cancelled yet) reservation. Based on these assumptions, the levels of travel 114 

avoidance at week t for x days ahead, 𝜆𝑡,𝑥
′ , and the coefficients of cancellation in response to the travel 115 

avoidance levels, 𝑐′ and 𝑑′, are estimated by maximum likelihood estimation. Likelihood function is given 116 

by 117 

 

𝐿(𝑐′, 𝑑′, 𝜆𝑡,𝑥
′ ) = ∏ ∏ pmf(poisson(𝑅𝑡,𝑥), 𝑅𝑡,𝑥,𝐷𝑎𝑡𝑎)𝑥𝑡 ×

∏ ∏ ∏ pmf(Bin(𝐶𝑡,𝑥,𝑦 , 𝑁𝑡,𝑥,𝑦,𝐷𝑎𝑡𝑎), 𝑀𝑡,𝑥,𝑦,𝐷𝑎𝑡𝑎)𝑦𝑥𝑡 , 

(6) 

where 𝑅𝑡,𝑥,𝐷𝑎𝑡𝑎 is the observed number of accommodation reservations for the stay on 𝑥 days ahead at 118 

week 𝑡. 𝑁𝑡,𝑥,𝑦,𝐷𝑎𝑡𝑎 is the observed number of the survived reservations on 𝑥 days ahead of the stay at week 119 

𝑡, which was the reservation on 𝑦 days ahead of the stay; and 𝑀𝑡,𝑥,𝑦,𝐷𝑎𝑡𝑎 is the observed number of 120 

cancellations on 𝑥 days ahead of the stay at week 𝑡, which was the reservation on 𝑦 days ahead of the stay, 121 

respectively. Then, 𝑝𝑚𝑓(𝑝𝑜𝑖𝑠𝑠𝑖𝑜𝑛(𝐸), 𝑥) and 𝑝𝑚𝑓(𝐵𝑖𝑛(𝑛, 𝑝), 𝑥) denote the probability mass function of 122 

the Poisson and binomial distribution when the expected number of observed events is 𝐸, the number of 123 

observed events is 𝑥, the trial number is 𝑛, and the probability that an event occurs is 𝑝. 124 

The estimation of 𝜆𝑡,𝑥
′  maximising the likelihood function 𝐿 was done as follows. The maximum likelihood 125 

estimate of 𝜆𝑡,𝑥
′  is referred to as 𝜆𝑡,𝑥

∗ . To this end, first, for the given coefficients pair of {𝑐′, 𝑑′}, 𝜆𝑡,𝑥
′  126 

maximising the likelihood, as described in Eq. (6), 𝜆𝑡,𝑥
′′ (𝑐′, 𝑑′), is computed using Brent’s method. Next, the 127 

coefficients pair {𝑐′, 𝑑′} maximising 𝐿(𝑐′, 𝑑′, 𝜆𝑡,𝑥
′′ (𝑐′, 𝑑′)), {𝑐∗, 𝑑∗}, is obtained using the Nelder–Mead 128 

method. Therefore, 𝜆𝑡,𝑥
∗  is given by 𝜆𝑡,𝑥

′′ (𝑐∗, 𝑑∗). 𝜆𝑡,𝑥
∗  was smoothed by the locally weighted smoothing 129 

method along 𝑥 days direction. The estimated 𝜆𝑡,𝑥
∗

 before applying the locally weighted smoothing method 130 

are shown on Supplementary File S1. 131 

Travel avoidance levels against COVID-19 132 

Reservation and cancellation are associated with factors other than COVID-19. To extract travel avoidance 133 

levels against COVID-19 specifically, we compared 𝜆𝑡,𝑥
∗  between before and after the emergence of 134 

COVID-19 assuming factors other than COVID-19 were similar even after the emergence of COVID-19. 135 

We measured the travel avoidance levels against COVID-19, �̂�𝑡,𝑥, as follows: 136 
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 �̂�𝑡,𝑥 =
𝜆𝑡,𝑥

∗  −𝜆𝑥

1−𝜆𝑥
, (7) 

where 𝜆̅
𝑥 is the mean measured travel avoidance level for 𝑥 days ahead before the outbreaks of COVID-19 137 

(between 1 January 2016 and 31 December 2019). ‘Travel avoidance levels’ in the main text refers to the 138 

travel avoidance levels against COVID-19, that is, �̂�𝑡,𝑥 . 139 

Analysis 140 

For the statistical test of significance of differences in the responses of travel avoidance levels in the short- 141 

and long-term future, we compared the two variances of �̂�𝑡,𝑥 after the emergence of COVID-19 with 𝑥 <142 

90 and ≥ 90 days by Levene’s test. The correlation of �̂�𝑡,𝑥 with the number of reported cases is calculated 143 

using Spearman’s rank correlation coefficient, Kendall’s rank correlation coefficient, and maximal 144 

information coefficient. All analyses were performed in R version 4.0.4 with RStudio interface version 145 

1.4.1717, R package ‘Rcpp’ version 1.0.7, ‘tidyverse’ version 1.3.1, and GNU compiler collection version 146 

11.2.0. Levene’s tests were performed by R package ‘lawstat’ version 3.4. The maximal information 147 

coefficients were derived by R package ‘minerva’ version 1.5.10. All figures were made using R package 148 

‘ggplot2’ version 3.3.5 and ‘RColorBrewer’ version 1.1-2. 149 

Results 150 

In this study, our aim is to measure decision-making for travel avoidance under COVID-19 based on 151 

accommodation reservation data. To simplify, government intervention and/or an increase in infectious 152 

spread will motivate people to change future behaviours to lessen the risk of contracting a disease. We 153 

observe this ‘change’ through accommodation reservation data showing the reduction in new reservations 154 

or increase in cancellations. We model these travel avoidances and compare them with real accommodation 155 

reservation data to measure the levels of the travel avoidance for a certain-term future at each week. 156 

Fig. 1A shows the evaluated travel avoidance levels in response to COVID-19. In 2019, the travel 157 

avoidance levels were low at any point of time in the future (the mean travel avoidance levels before the 158 

COVID-19 outbreaks were normalised to zero; the 5–95 percentile range is [-0.481, 0.408]). This tendency 159 

continued even after the first case of COVID-19 was confirmed in Japan on 16 January 2020 (indicated by 160 

a blue dashed line; see also Fig. S1A). At the end of the February 2020, the travel avoidance levels rapidly 161 

rose and became clearly high after the first declaration of a state of emergency by the Japanese government 162 

after 4 April 2020 (the mean travel avoidance level is 0.430; the 5–95 percentile range is [0.026, 0.621]). 163 

In terms of sensitivity to the change in the COVID-19 outbreak status, we observed a significant difference 164 

between the responses of the travel avoidance levels for the short- and long-term future (Levene’s test, 165 

p<0.05) (blue and red line in Fig. 2). The travel avoidance levels for the first three months (red curve in 166 

Fig. 2) rapidly grew between the first report of COVID-19 case in Japan (grey line in Fig. 2) and the first 167 
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declaration of the emergency (pale red areas in Fig. 2). Whereas those for more than three months ahead 168 

(blue curve in Fig. 2) were still low (see Fig. S1B). At the first declaration of emergency, the travel 169 

avoidance levels for more than three months ahead also heightened (see Fig. S1C). After, although the 170 

travel avoidance levels for next three months dynamically varied in response to the outbreak status or 171 

government interventions, the travel avoidance levels for more than three months ahead remained high 172 

regardless of the situation (Fig. 2). After April 2020, the observed travel avoidance levels can be 173 

qualitatively categorised into two patterns. First, the travel avoidance levels were high at any future time 174 

point when the number of reported cases of COVID-19 were high and/or when the government declared a 175 

state of emergency (see Fig. S1E). Second, the travel avoidance levels for next few months were low, 176 

whereas those for more than three months ahead remained high when the reported new cases were low and 177 

there was no government intervention (see Fig. S1D and S1F). 178 

Although the travel avoidance levels for the next three months seemed to synchronously vary with the 179 

outbreak status (Fig. 2), the correlation between the travel avoidance levels and the weekly number of 180 

reported cases was weak (Spearman’s rank correlation coefficient is 0.192; see Fig. 3A and Table S1). 181 

However, if the COVID-19 pandemic in Japan is classified into five waves (Fig. 3C), the travel avoidance 182 

levels for the next three months become strongly correlated with the number of reported cases (Spearman’s 183 

rank correlation coefficients at each wave are 0.902, 0.654, 0.849, 0.932, and 0.926; see Fig. 3B and Table 184 

S1). The correlation coefficients for the second wave were relatively weaker than for the other waves 185 

(Table S1). For the first wave (from 16 January to 21 June 2020), the travel avoidance levels for next three 186 

months were remarkably high compared with the other four waves (Fig. 3B). The maximum of the weekly 187 

reported-case numbers at each wave increased in later waves (Fig. 3C), indicating that the response of 188 

travel avoidance levels to the absolute number of reported cases weakened in later waves. 189 

We also measured the travel avoidance levels in response to COVID-19 separately at each of four 190 

prefectures targeted in this study, namely Miyagi, Aichi, Osaka, and Fukuoka (see Fig. S2). We found that 191 

(i) the travel avoidance levels drastically increased after the emergence of COVID-19; (ii) the travel 192 

avoidance levels for the short-term future varied with the change in outbreak status, whereas those for the 193 

long-term future remained high; and (iii) there was high correlation of the travel avoidance levels with the 194 

number of reported cases stratified by the waves of COVID-19. These findings were robust between the 195 

four prefectures (see Fig. S3) despite their geographical distances. 196 

 197 

Discussion  198 

We applied accommodation reservation data to evaluate decision-making on future behaviours for reducing 199 

the risk of infection. Our analysis clearly shows the dynamics of the travel avoidance levels of the Japanese 200 
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with the progress of the outbreak. After the emergence of COVID-19 in Japan, travel avoidance levels for 201 

the next three months dynamically changed in respond to the outbreak status and government interventions. 202 

We see that the travel avoidance levels for more than three months ahead remained high after the outbreak 203 

in Japan. These results reveal how people estimated the future risk of infections and changed their 204 

behaviours. 205 

Our analyses highlight the factors that influenced Japanese people’s decision-making to avoid travel. For 206 

example, even after the first report of COVID-19 case in Japan, the travel avoidance levels were similar to 207 

the levels before the emergence of COVID-19 during the following weeks (Fig. 1C). It may be that the 208 

reports of COVID-19 infections were limited at the very early stage of the outbreak. Indeed, rapid growth 209 

of travel avoidance levels was observed around the time a task force was established by the Ministry of 210 

Health, Labour and Welfare to contain COVID-19 clusters by 25 February 202039. Thus, the incremental 211 

reports of COVID-19 seemed to have triggered an equivalent increment in travel avoidance levels. 212 

Similarly, in March 2020, the travel avoidance levels for the next three months grew, whereas that in 213 

proceeding more than three months remained low (Fig. 1D). Thus, people predicted that the outbreak could 214 

be over within three months. 215 

The correlation between the travel avoidance levels for the next three months and the number of reported 216 

cases was weak for the entire COVID-19 outbreak period in Japan, whereas the correlation was strong in 217 

the analyses for each wave. This result suggests that people evaluated the risk based not on the number of 218 

reported cases itself but based on a comparison of the current number of reported cases in the recent trend. 219 

Considering that the maximum of weekly reported-case numbers at each wave was higher in the later wave, 220 

the response to the absolute number of reported cases weakened in the later wave, indicating habituation to 221 

the absolute number of reported cases40,41. The correlation between the travel avoidance levels for the next 222 

three months and the number of reported cases was also weaker for the second wave compared with the 223 

other waves; probably because a state of emergency was not declared for the second wave. 224 

Interestingly, after April 2020, the travel avoidance levels for more than three months ahead remained high, 225 

regardless of the reduction in the number of reported cases or the relaxation of government restrictions. In 226 

this period, it is possible that people’s confidence in their own future predictions grew; however, there still 227 

existed difficulty in making predictions more than three months ahead owing to the high uncertainty. Thus, 228 

the factors causing high level of travel avoidance might be different for the short- and long-term future; that 229 

is, the travel avoidance behaviours for the short-term future are determined by people’s own future 230 

prediction, whereas those for the long-term future were constant because of higher uncertainty. 231 

We successfully showed that risk reduction of future behaviours can be measured using the accommodation 232 

reservation data. These data have two essential differences from the typical human mobility data. First, they 233 
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contain information about two different events, namely new reservations and cancellations of existing 234 

reservations. We cannot estimate the travel avoidance levels from only one because it is impossible to 235 

estimate both the travel avoidance levels and the behavioural response to the travel avoidance levels (in our 236 

cases coefficients of sigmoid functions) simultaneously. Since these two events are mutually independent, 237 

we can estimate the travel avoidance levels, which then influence the occurrence of both events 238 

simultaneously. Second, these data contain information about future behaviour. The effect of human 239 

behaviour on the disease spread has been examined using various data sources such as human mobility data 240 

or social network services19. However, such data contain only the past or mostly real-time information. In 241 

contrast, accommodation reservation data deal with decision-making for future behaviours at a specific 242 

time, and therefore, allow us to forecast future behaviour. 243 

Our method has some clear advantages over prior methods for evaluation of behavioural responses. First, 244 

our method can quantitatively evaluate the decision-making of large-scale populations with little effort. 245 

Second, the accommodation reservation data are a direct observation of decision-making, and thus, free 246 

from response biases, which are common in the assessment of attitudes in questionnaires42. Third, this 247 

method can be applicable to any other accommodation reservation data regardless of country, periods, and 248 

trigger event (e.g. it can be applied to gauge the responses to natural disasters or political conflicts). A 249 

similar method could be applied to reservations to sports facilities, restaurants, or health-related clinics. 250 

Although our study successfully revealed the behavioural changes in response to COVID-19, further 251 

studies are required to better understand these changes. First, the causality of the detected change in travel 252 

avoidance levels should be examined. For example, we showed that travel avoidance levels for the next 253 

three months varied with the number of new reported cases (see Fig. 1A and 1B); although we did not 254 

analyse the causality between them. The effectiveness of government interventions could be evaluated by 255 

focusing on the drastic change in travel avoidance levels and measuring the types of information or events 256 

that have a critical influence on human behaviour decision-making. 257 

Second, the influence of our estimated travel avoidance level on other types of behavioural changes besides 258 

accommodation reservation is unclear. For instance, a comparison with precautionary measures against 259 

infection adopted or the avoidance of public transport, which have been reported during COVID-19 260 

outbreaks13,14, can reveal the change in wider variations of behaviours to understand precise human 261 

response to emerging outbreaks of infectious disease. 262 

In conclusion, we demonstrated that the decision-making for future behaviours to avoid travels for reducing 263 

the risk of contracting COVID-19 could be observed from accommodation reservation data. This method 264 

can quantitatively measure a large-scale population’s predictions for the future risk of contracting COVID-265 

19. The motivation of risk reduction for short-term future behaviours dynamically varied and was 266 
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associated with the outbreak status and/or government interventions. Our results provide essential 267 

information for the prediction of human responses to an epidemic. 268 
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Figures and Tables 374 
 375 

 376 

Figure 1. Time evolution of human behavioural response to COVID-19. (A) Time evolution of travel 377 

avoidance level for the travel x days later at time t, �̂�𝑡,𝑥. The colours show the estimated values of �̂�𝑡,𝑥. 378 

Vertical dashed line shows the report timing of the first COVID-19 case in Japan. (B) Time evolution of 379 

weekly number of COVID-cases in Japan. Filled pale red colour squares show the timing when the Japan 380 

government declared a state of emergency. 381 
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 383 

Figure 2. Comparison of travel avoidance levels by short-term and long-term prediction. True lines show 384 

the average travel avoidance level for the travel < 90 days later (red) and that for the travel ≥ 90 days later 385 

(blue), respectively. Black true line shows weekly number of reported COVID-19 cases in all of Japan. 386 

Dashed lines show 95 percentiles of the average travel avoidance level for the travel < 90 days later (red) 387 

and ≥ 90 days later (blue). Grey vertical line shows the timing of first the COVID-19 case in Japan. 388 
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 390 

Figure 3. Human behavioural response against COVID-19 with the number of reported cases. (A) Weak 391 

correlation relation between the travel avoidance level and the number of reported COVID-19 cases. 392 

Vertical axis shows the average travel avoidance level for the travel from 0 day to 365 days later. 393 

Horizontal axis shows the number of reported COVID-19 cases in all of Japan. (B) Stratification of time-394 

series of reported cases by the wave of epidemic improves the correlation with the travel avoidance level. 395 

Vertical axis shows the average travel avoidance level for the travel from 0 day to 365 days later. 396 

Horizontal axis shows the scaled number of reported cases with the maximum number of reported cases in 397 

each wave of COVID-19 in all of Japan, which is equal to unity at the peak of each wave. The colours 398 

denote the waves of COVID-19 in Japan. (C) The definition of waves of COVID-19 in Japan. Filled red 399 

colour squares show the timings when the Japanese government declared a state of emergency. 400 
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 416 

Figure S1. Snapshots of travel avoidance level for the travel in the future at six time points. (A) before 417 

COVID-19, (B) the early phase of COVID-19, (C) around the peak of the first wave, (D) between the 418 

second and third waves, (E) around the peak of the third wave, (F) between the fourth and fifth waves, and 419 

(G) locations of time points on the epidemic curve of COVID-19 in Japan (a-f in panel (G) are correspond 420 

to the time points of panel (A)-(F)). 421 
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 423 

Figure S2. The locations of Miyagi, Aichi, Osaka, and Fukuoka prefectures.  424 
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 425 

Figure S3. Time evolution of human response against COVID-19 in four prefectures. Travel avoidance 426 

level for the travel 𝑥 days later at time 𝑡, �̂�𝑡,𝑥 in (A) Miyagi, (B) Aichi, (C) Osaka, (D) Fukuoka prefecture. 427 

The colours show the estimated values of �̂�𝑡,𝑥. (E) Time evolution of weekly number of COVID-cases in 428 

Japan. Filled red-coloured squares show the timing when the Japan government declared a state of 429 

emergency.  430 
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 431 

  

  Wave 

All 1st 2nd 3rd 4th 5th 

Spearman rank 

correlation coefficient 

0.192 0.904 0.654 0.849 0.932 0.926 

Kendall rank 

correlation coefficient 

0.158 0.782 0.467 0.692 0.79 0.79 

Maximal information 

coefficient 

0.432 0.776 0.538 0.785 0.706 0.998 

 432 

Table S1. The correlation between the travel avoidance level and outbreak status stratified by the five 433 

waves of COVID-19 pandemic in Japan. The correlation between the average travel avoidance level for the 434 

travel from 0 day to 365 days later and the relative number of reported cases to the maximum number of 435 

reported cases in each wave of COVID-19 in Japan was calculated using Spearman rank correlation 436 

coefficient, Kendall rank correlation coefficient, and maximal information coefficient. 437 

 438 

File S1 439 

File S1 contain the following six csv files.  Paremter_ab.csv shows the estimated model parameter values 440 

a*, b* in Miyagi, Aichi, Osaka, Fukuoka and All of four prefectures. Miyagi_lambda.csv, 441 

Aichi_lambda.csv, Osaka_lambda.csv, Fukuoka_lambda.csv and All_lambda.csv shows the estimated 442 

model parameter values 𝜆𝑡,𝑥
∗

  on Miyagi, Aichi, Osaka, Fukuoka and All of four prefectures. First and 443 

second columns shows the start and end date of the estimated  𝜆𝑡,𝑥
∗

 (i.e., range of term t), and the following 444 

other columns named “dayx” shows the estimated  𝜆𝑡,𝑥
∗

 values on x days ahead. 445 

 446 


